Step |
Hyp |
Ref |
Expression |
1 |
|
chfacfisf.a |
|
2 |
|
chfacfisf.b |
|
3 |
|
chfacfisf.p |
|
4 |
|
chfacfisf.y |
|
5 |
|
chfacfisf.r |
|
6 |
|
chfacfisf.s |
|
7 |
|
chfacfisf.0 |
|
8 |
|
chfacfisf.t |
|
9 |
|
chfacfisf.g |
|
10 |
|
chfacfscmulcl.x |
|
11 |
|
chfacfscmulcl.m |
|
12 |
|
chfacfscmulcl.e |
|
13 |
|
chfacfscmulgsum.p |
|
14 |
|
eqid |
|
15 |
|
crngring |
|
16 |
15
|
anim2i |
|
17 |
16
|
3adant3 |
|
18 |
3 4
|
pmatring |
|
19 |
17 18
|
syl |
|
20 |
|
ringcmn |
|
21 |
19 20
|
syl |
|
22 |
21
|
adantr |
|
23 |
|
nn0ex |
|
24 |
23
|
a1i |
|
25 |
|
simpll |
|
26 |
|
simplr |
|
27 |
|
simpr |
|
28 |
25 26 27
|
3jca |
|
29 |
1 2 3 4 5 6 7 8 9 10 11 12
|
chfacfscmulcl |
|
30 |
28 29
|
syl |
|
31 |
1 2 3 4 5 6 7 8 9 10 11 12
|
chfacfscmulfsupp |
|
32 |
|
nn0disj |
|
33 |
32
|
a1i |
|
34 |
|
nnnn0 |
|
35 |
|
peano2nn0 |
|
36 |
34 35
|
syl |
|
37 |
|
nn0split |
|
38 |
36 37
|
syl |
|
39 |
38
|
ad2antrl |
|
40 |
14 7 13 22 24 30 31 33 39
|
gsumsplit2 |
|
41 |
|
simpll |
|
42 |
|
simplr |
|
43 |
|
nncn |
|
44 |
|
add1p1 |
|
45 |
43 44
|
syl |
|
46 |
45
|
ad2antrl |
|
47 |
46
|
fveq2d |
|
48 |
47
|
eleq2d |
|
49 |
48
|
biimpa |
|
50 |
1 2 3 4 5 6 7 8 9 10 11 12
|
chfacfscmul0 |
|
51 |
41 42 49 50
|
syl3anc |
|
52 |
51
|
mpteq2dva |
|
53 |
52
|
oveq2d |
|
54 |
15 18
|
sylan2 |
|
55 |
|
ringmnd |
|
56 |
54 55
|
syl |
|
57 |
56
|
3adant3 |
|
58 |
|
fvex |
|
59 |
57 58
|
jctir |
|
60 |
59
|
adantr |
|
61 |
7
|
gsumz |
|
62 |
60 61
|
syl |
|
63 |
53 62
|
eqtrd |
|
64 |
63
|
oveq2d |
|
65 |
|
fzfid |
|
66 |
|
elfznn0 |
|
67 |
66 28
|
sylan2 |
|
68 |
67 29
|
syl |
|
69 |
68
|
ralrimiva |
|
70 |
14 22 65 69
|
gsummptcl |
|
71 |
14 13 7
|
mndrid |
|
72 |
57 70 71
|
syl2an2r |
|
73 |
64 72
|
eqtrd |
|
74 |
34
|
ad2antrl |
|
75 |
14 13 22 74 68
|
gsummptfzsplit |
|
76 |
|
elfznn0 |
|
77 |
76 30
|
sylan2 |
|
78 |
14 13 22 74 77
|
gsummptfzsplitl |
|
79 |
57
|
adantr |
|
80 |
|
0nn0 |
|
81 |
80
|
a1i |
|
82 |
1 2 3 4 5 6 7 8 9 10 11 12
|
chfacfscmulcl |
|
83 |
81 82
|
mpd3an3 |
|
84 |
|
oveq1 |
|
85 |
|
fveq2 |
|
86 |
84 85
|
oveq12d |
|
87 |
14 86
|
gsumsn |
|
88 |
79 81 83 87
|
syl3anc |
|
89 |
88
|
oveq2d |
|
90 |
78 89
|
eqtrd |
|
91 |
|
ovexd |
|
92 |
|
1nn0 |
|
93 |
92
|
a1i |
|
94 |
74 93
|
nn0addcld |
|
95 |
1 2 3 4 5 6 7 8 9 10 11 12
|
chfacfscmulcl |
|
96 |
94 95
|
mpd3an3 |
|
97 |
|
oveq1 |
|
98 |
|
fveq2 |
|
99 |
97 98
|
oveq12d |
|
100 |
14 99
|
gsumsn |
|
101 |
79 91 96 100
|
syl3anc |
|
102 |
90 101
|
oveq12d |
|
103 |
|
fzfid |
|
104 |
|
simpll |
|
105 |
|
simplr |
|
106 |
|
elfznn |
|
107 |
106
|
nnnn0d |
|
108 |
107
|
adantl |
|
109 |
104 105 108 29
|
syl3anc |
|
110 |
109
|
ralrimiva |
|
111 |
14 22 103 110
|
gsummptcl |
|
112 |
14 13
|
mndass |
|
113 |
79 111 83 96 112
|
syl13anc |
|
114 |
106
|
nnne0d |
|
115 |
114
|
ad2antlr |
|
116 |
|
neeq1 |
|
117 |
116
|
adantl |
|
118 |
115 117
|
mpbird |
|
119 |
|
eqneqall |
|
120 |
118 119
|
mpan9 |
|
121 |
|
simplr |
|
122 |
|
eqeq1 |
|
123 |
122
|
eqcoms |
|
124 |
123
|
adantl |
|
125 |
121 124
|
mpbird |
|
126 |
125
|
fveq2d |
|
127 |
126
|
fveq2d |
|
128 |
127
|
oveq2d |
|
129 |
120 128
|
oveq12d |
|
130 |
|
elfz2 |
|
131 |
|
zleltp1 |
|
132 |
131
|
ancoms |
|
133 |
132
|
3adant1 |
|
134 |
133
|
biimpcd |
|
135 |
134
|
adantl |
|
136 |
135
|
impcom |
|
137 |
136
|
orcd |
|
138 |
|
zre |
|
139 |
|
1red |
|
140 |
138 139
|
readdcld |
|
141 |
|
zre |
|
142 |
140 141
|
anim12ci |
|
143 |
142
|
3adant1 |
|
144 |
|
lttri2 |
|
145 |
143 144
|
syl |
|
146 |
145
|
adantr |
|
147 |
137 146
|
mpbird |
|
148 |
130 147
|
sylbi |
|
149 |
148
|
ad2antlr |
|
150 |
|
neeq1 |
|
151 |
150
|
adantl |
|
152 |
149 151
|
mpbird |
|
153 |
152
|
adantr |
|
154 |
153
|
neneqd |
|
155 |
154
|
pm2.21d |
|
156 |
155
|
imp |
|
157 |
106
|
nnred |
|
158 |
|
eleq1w |
|
159 |
157 158
|
syl5ibrcom |
|
160 |
159
|
adantl |
|
161 |
160
|
imp |
|
162 |
74
|
nn0red |
|
163 |
162
|
ad2antrr |
|
164 |
|
1red |
|
165 |
163 164
|
readdcld |
|
166 |
130 136
|
sylbi |
|
167 |
166
|
ad2antlr |
|
168 |
|
breq1 |
|
169 |
168
|
adantl |
|
170 |
167 169
|
mpbird |
|
171 |
161 165 170
|
ltnsymd |
|
172 |
171
|
pm2.21d |
|
173 |
172
|
ad2antrr |
|
174 |
173
|
imp |
|
175 |
|
simp-4r |
|
176 |
175
|
fvoveq1d |
|
177 |
176
|
fveq2d |
|
178 |
175
|
fveq2d |
|
179 |
178
|
fveq2d |
|
180 |
179
|
oveq2d |
|
181 |
177 180
|
oveq12d |
|
182 |
174 181
|
ifeqda |
|
183 |
156 182
|
ifeqda |
|
184 |
129 183
|
ifeqda |
|
185 |
|
ovexd |
|
186 |
9 184 108 185
|
fvmptd2 |
|
187 |
186
|
oveq2d |
|
188 |
187
|
mpteq2dva |
|
189 |
188
|
oveq2d |
|
190 |
|
nn0p1gt0 |
|
191 |
|
0red |
|
192 |
|
ltne |
|
193 |
191 192
|
sylan |
|
194 |
|
neeq1 |
|
195 |
193 194
|
syl5ibrcom |
|
196 |
34 190 195
|
syl2anc2 |
|
197 |
196
|
ad2antrl |
|
198 |
197
|
imp |
|
199 |
|
eqneqall |
|
200 |
198 199
|
mpan9 |
|
201 |
|
iftrue |
|
202 |
201
|
ad2antlr |
|
203 |
200 202
|
ifeqda |
|
204 |
74 35
|
syl |
|
205 |
|
fvexd |
|
206 |
9 203 204 205
|
fvmptd2 |
|
207 |
206
|
oveq2d |
|
208 |
15
|
3ad2ant2 |
|
209 |
|
eqid |
|
210 |
10 3 209
|
vr1cl |
|
211 |
208 210
|
syl |
|
212 |
|
eqid |
|
213 |
212 209
|
mgpbas |
|
214 |
|
eqid |
|
215 |
212 214
|
ringidval |
|
216 |
213 215 12
|
mulg0 |
|
217 |
211 216
|
syl |
|
218 |
3
|
ply1crng |
|
219 |
218
|
anim2i |
|
220 |
219
|
3adant3 |
|
221 |
4
|
matsca2 |
|
222 |
220 221
|
syl |
|
223 |
222
|
fveq2d |
|
224 |
217 223
|
eqtrd |
|
225 |
224
|
adantr |
|
226 |
225
|
oveq1d |
|
227 |
3 4
|
pmatlmod |
|
228 |
15 227
|
sylan2 |
|
229 |
228
|
3adant3 |
|
230 |
1 2 3 4 5 6 7 8 9
|
chfacfisf |
|
231 |
15 230
|
syl3anl2 |
|
232 |
231 81
|
ffvelrnd |
|
233 |
|
eqid |
|
234 |
|
eqid |
|
235 |
14 233 11 234
|
lmodvs1 |
|
236 |
229 232 235
|
syl2an2r |
|
237 |
|
iftrue |
|
238 |
|
ovexd |
|
239 |
9 237 81 238
|
fvmptd3 |
|
240 |
226 236 239
|
3eqtrd |
|
241 |
207 240
|
oveq12d |
|
242 |
14 13
|
cmncom |
|
243 |
22 83 96 242
|
syl3anc |
|
244 |
|
ringgrp |
|
245 |
19 244
|
syl |
|
246 |
245
|
adantr |
|
247 |
207 96
|
eqeltrrd |
|
248 |
19
|
adantr |
|
249 |
8 1 2 3 4
|
mat2pmatbas |
|
250 |
15 249
|
syl3an2 |
|
251 |
250
|
adantr |
|
252 |
|
simpl1 |
|
253 |
208
|
adantr |
|
254 |
|
elmapi |
|
255 |
254
|
adantl |
|
256 |
255
|
adantl |
|
257 |
|
0elfz |
|
258 |
34 257
|
syl |
|
259 |
258
|
ad2antrl |
|
260 |
256 259
|
ffvelrnd |
|
261 |
8 1 2 3 4
|
mat2pmatbas |
|
262 |
252 253 260 261
|
syl3anc |
|
263 |
14 5
|
ringcl |
|
264 |
248 251 262 263
|
syl3anc |
|
265 |
14 7 6 13
|
grpsubadd0sub |
|
266 |
246 247 264 265
|
syl3anc |
|
267 |
241 243 266
|
3eqtr4d |
|
268 |
189 267
|
oveq12d |
|
269 |
113 268
|
eqtrd |
|
270 |
75 102 269
|
3eqtrd |
|
271 |
40 73 270
|
3eqtrd |
|