Metamath Proof Explorer


Theorem chincl

Description: Closure of Hilbert lattice intersection. (Contributed by NM, 15-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chincl A C B C A B C

Proof

Step Hyp Ref Expression
1 ineq1 A = if A C A A B = if A C A B
2 1 eleq1d A = if A C A A B C if A C A B C
3 ineq2 B = if B C B if A C A B = if A C A if B C B
4 3 eleq1d B = if B C B if A C A B C if A C A if B C B C
5 ifchhv if A C A C
6 ifchhv if B C B C
7 5 6 chincli if A C A if B C B C
8 2 4 7 dedth2h A C B C A B C