Metamath Proof Explorer


Theorem chintcli

Description: The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis chintcl.1 A C A
Assertion chintcli A C

Proof

Step Hyp Ref Expression
1 chintcl.1 A C A
2 1 simpli A C
3 chsssh C S
4 2 3 sstri A S
5 1 simpri A
6 4 5 pm3.2i A S A
7 6 shintcli A S
8 2 sseli y A y C
9 vex x V
10 9 chlimi y C f : y f v x x y
11 10 3exp y C f : y f v x x y
12 11 com3r f v x y C f : y x y
13 8 12 syl5 f v x y A f : y x y
14 13 imp f v x y A f : y x y
15 14 ralimdva f v x y A f : y y A x y
16 5 fint f : A y A f : y
17 9 elint2 x A y A x y
18 15 16 17 3imtr4g f v x f : A x A
19 18 impcom f : A f v x x A
20 19 gen2 f x f : A f v x x A
21 isch2 A C A S f x f : A f v x x A
22 7 20 21 mpbir2an A C