Metamath Proof Explorer


Theorem chj0

Description: Join with Hilbert lattice zero. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chj0 A C A 0 = A

Proof

Step Hyp Ref Expression
1 oveq1 A = if A C A 0 A 0 = if A C A 0 0
2 id A = if A C A 0 A = if A C A 0
3 1 2 eqeq12d A = if A C A 0 A 0 = A if A C A 0 0 = if A C A 0
4 h0elch 0 C
5 4 elimel if A C A 0 C
6 5 chj0i if A C A 0 0 = if A C A 0
7 3 6 dedth A C A 0 = A