Metamath Proof Explorer


Theorem chj12

Description: A rearrangement of Hilbert lattice join. (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion chj12 A C B C C C A B C = B A C

Proof

Step Hyp Ref Expression
1 chjcom A C B C A B = B A
2 1 3adant3 A C B C C C A B = B A
3 2 oveq1d A C B C C C A B C = B A C
4 chjass A C B C C C A B C = A B C
5 chjass B C A C C C B A C = B A C
6 5 3com12 A C B C C C B A C = B A C
7 3 4 6 3eqtr3d A C B C C C A B C = B A C