Metamath Proof Explorer


Theorem chj4i

Description: Rearrangement of the join of 4 Hilbert lattice elements. (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses chj12.1 A C
chj12.2 B C
chj12.3 C C
chj4.4 D C
Assertion chj4i A B C D = A C B D

Proof

Step Hyp Ref Expression
1 chj12.1 A C
2 chj12.2 B C
3 chj12.3 C C
4 chj4.4 D C
5 2 3 4 chj12i B C D = C B D
6 5 oveq2i A B C D = A C B D
7 3 4 chjcli C D C
8 1 2 7 chjassi A B C D = A B C D
9 2 4 chjcli B D C
10 1 3 9 chjassi A C B D = A C B D
11 6 8 10 3eqtr4i A B C D = A C B D