Metamath Proof Explorer


Theorem chjass

Description: Associative law for Hilbert lattice join. From definition of lattice in Kalmbach p. 14. (Contributed by NM, 10-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chjass A C B C C C A B C = A B C

Proof

Step Hyp Ref Expression
1 oveq1 A = if A C A A B = if A C A B
2 1 oveq1d A = if A C A A B C = if A C A B C
3 oveq1 A = if A C A A B C = if A C A B C
4 2 3 eqeq12d A = if A C A A B C = A B C if A C A B C = if A C A B C
5 oveq2 B = if B C B if A C A B = if A C A if B C B
6 5 oveq1d B = if B C B if A C A B C = if A C A if B C B C
7 oveq1 B = if B C B B C = if B C B C
8 7 oveq2d B = if B C B if A C A B C = if A C A if B C B C
9 6 8 eqeq12d B = if B C B if A C A B C = if A C A B C if A C A if B C B C = if A C A if B C B C
10 oveq2 C = if C C C if A C A if B C B C = if A C A if B C B if C C C
11 oveq2 C = if C C C if B C B C = if B C B if C C C
12 11 oveq2d C = if C C C if A C A if B C B C = if A C A if B C B if C C C
13 10 12 eqeq12d C = if C C C if A C A if B C B C = if A C A if B C B C if A C A if B C B if C C C = if A C A if B C B if C C C
14 ifchhv if A C A C
15 ifchhv if B C B C
16 ifchhv if C C C C
17 14 15 16 chjassi if A C A if B C B if C C C = if A C A if B C B if C C C
18 4 9 13 17 dedth3h A C B C C C A B C = A B C