Metamath Proof Explorer


Theorem chjassi

Description: Associative law for Hilbert lattice join. From definition of lattice in Kalmbach p. 14. (Contributed by NM, 10-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 A C
chjcl.2 B C
chjass.3 C C
Assertion chjassi A B C = A B C

Proof

Step Hyp Ref Expression
1 ch0le.1 A C
2 chjcl.2 B C
3 chjass.3 C C
4 inass A B C = A B C
5 1 2 chdmj1i A B = A B
6 5 ineq1i A B C = A B C
7 2 3 chdmj1i B C = B C
8 7 ineq2i A B C = A B C
9 4 6 8 3eqtr4i A B C = A B C
10 9 fveq2i A B C = A B C
11 1 2 chjcli A B C
12 11 3 chdmm4i A B C = A B C
13 2 3 chjcli B C C
14 1 13 chdmm4i A B C = A B C
15 10 12 14 3eqtr3i A B C = A B C