Metamath Proof Explorer


Theorem chjjdiri

Description: Hilbert lattice join distributes over itself. (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses chj12.1 A C
chj12.2 B C
chj12.3 C C
Assertion chjjdiri A B C = A C B C

Proof

Step Hyp Ref Expression
1 chj12.1 A C
2 chj12.2 B C
3 chj12.3 C C
4 3 chjidmi C C = C
5 4 oveq2i A B C C = A B C
6 1 2 3 3 chj4i A B C C = A C B C
7 5 6 eqtr3i A B C = A C B C