Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Subspaces and projections
Subspace sum, span, lattice join, lattice supremum
chjval
Next ⟩
chjvali
Metamath Proof Explorer
Ascii
Unicode
Theorem
chjval
Description:
Value of join in
CH
.
(Contributed by
NM
, 9-Aug-2000)
(New usage is discouraged.)
Ref
Expression
Assertion
chjval
⊢
A
∈
C
ℋ
∧
B
∈
C
ℋ
→
A
∨
ℋ
B
=
⊥
⁡
⊥
⁡
A
∪
B
Proof
Step
Hyp
Ref
Expression
1
chsh
⊢
A
∈
C
ℋ
→
A
∈
S
ℋ
2
chsh
⊢
B
∈
C
ℋ
→
B
∈
S
ℋ
3
shjval
⊢
A
∈
S
ℋ
∧
B
∈
S
ℋ
→
A
∨
ℋ
B
=
⊥
⁡
⊥
⁡
A
∪
B
4
1
2
3
syl2an
⊢
A
∈
C
ℋ
∧
B
∈
C
ℋ
→
A
∨
ℋ
B
=
⊥
⁡
⊥
⁡
A
∪
B