Metamath Proof Explorer


Theorem chjvali

Description: Value of join in CH . (Contributed by NM, 9-Aug-2000) (New usage is discouraged.)

Ref Expression
Hypotheses chjval.1 A C
chjval.2 B C
Assertion chjvali A B = A B

Proof

Step Hyp Ref Expression
1 chjval.1 A C
2 chjval.2 B C
3 chjval A C B C A B = A B
4 1 2 3 mp2an A B = A B