Metamath Proof Explorer


Theorem chlcsschl

Description: A closed subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 10-Apr-2008) (Revised by AV, 8-Oct-2022)

Ref Expression
Hypotheses cmslsschl.x X = W 𝑠 U
chlcsschl.s S = ClSubSp W
Assertion chlcsschl W ℂHil U S X ℂHil

Proof

Step Hyp Ref Expression
1 cmslsschl.x X = W 𝑠 U
2 chlcsschl.s S = ClSubSp W
3 hlbn W ℂHil W Ban
4 hlcph W ℂHil W CPreHil
5 3 4 jca W ℂHil W Ban W CPreHil
6 1 2 bncssbn W Ban W CPreHil U S X Ban
7 5 6 sylan W ℂHil U S X Ban
8 hlphl W ℂHil W PreHil
9 eqid LSubSp W = LSubSp W
10 2 9 csslss W PreHil U S U LSubSp W
11 8 10 sylan W ℂHil U S U LSubSp W
12 1 9 cphsscph W CPreHil U LSubSp W X CPreHil
13 4 11 12 syl2an2r W ℂHil U S X CPreHil
14 ishl X ℂHil X Ban X CPreHil
15 7 13 14 sylanbrc W ℂHil U S X ℂHil