Metamath Proof Explorer


Theorem chlej1

Description: Add join to both sides of Hilbert lattice ordering. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chlej1 A C B C C C A B A C B C

Proof

Step Hyp Ref Expression
1 chsh A C A S
2 chsh B C B S
3 chsh C C C S
4 shlej1 A S B S C S A B A C B C
5 1 2 3 4 syl3anl A C B C C C A B A C B C