Metamath Proof Explorer


Theorem chlej12i

Description: Add join to both sides of a Hilbert lattice ordering. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 A C
chjcl.2 B C
chlub.1 C C
chlej12.4 D C
Assertion chlej12i A B C D A C B D

Proof

Step Hyp Ref Expression
1 ch0le.1 A C
2 chjcl.2 B C
3 chlub.1 C C
4 chlej12.4 D C
5 1 2 3 chlej1i A B A C B C
6 3 4 2 chlej2i C D B C B D
7 5 6 sylan9ss A B C D A C B D