Metamath Proof Explorer


Theorem chlejb1

Description: Hilbert lattice ordering in terms of join. (Contributed by NM, 30-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chlejb1 A C B C A B A B = B

Proof

Step Hyp Ref Expression
1 sseq1 A = if A C A 0 A B if A C A 0 B
2 oveq1 A = if A C A 0 A B = if A C A 0 B
3 2 eqeq1d A = if A C A 0 A B = B if A C A 0 B = B
4 1 3 bibi12d A = if A C A 0 A B A B = B if A C A 0 B if A C A 0 B = B
5 sseq2 B = if B C B 0 if A C A 0 B if A C A 0 if B C B 0
6 oveq2 B = if B C B 0 if A C A 0 B = if A C A 0 if B C B 0
7 id B = if B C B 0 B = if B C B 0
8 6 7 eqeq12d B = if B C B 0 if A C A 0 B = B if A C A 0 if B C B 0 = if B C B 0
9 5 8 bibi12d B = if B C B 0 if A C A 0 B if A C A 0 B = B if A C A 0 if B C B 0 if A C A 0 if B C B 0 = if B C B 0
10 h0elch 0 C
11 10 elimel if A C A 0 C
12 10 elimel if B C B 0 C
13 11 12 chlejb1i if A C A 0 if B C B 0 if A C A 0 if B C B 0 = if B C B 0
14 4 9 13 dedth2h A C B C A B A B = B