Metamath Proof Explorer


Theorem chlejb1i

Description: Hilbert lattice ordering in terms of join. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 A C
chjcl.2 B C
Assertion chlejb1i A B A B = B

Proof

Step Hyp Ref Expression
1 ch0le.1 A C
2 chjcl.2 B C
3 ssid B B
4 1 2 2 chlubii A B B B A B B
5 3 4 mpan2 A B A B B
6 2 1 chub2i B A B
7 5 6 jctir A B A B B B A B
8 eqss A B = B A B B B A B
9 7 8 sylibr A B A B = B
10 1 2 chub1i A A B
11 eqimss A B = B A B B
12 10 11 sstrid A B = B A B
13 9 12 impbii A B A B = B