Metamath Proof Explorer


Theorem chlejb2

Description: Hilbert lattice ordering in terms of join. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)

Ref Expression
Assertion chlejb2 A C B C A B B A = B

Proof

Step Hyp Ref Expression
1 chlejb1 A C B C A B A B = B
2 chjcom A C B C A B = B A
3 2 eqeq1d A C B C A B = B B A = B
4 1 3 bitrd A C B C A B B A = B