Metamath Proof Explorer


Theorem chlimi

Description: The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypothesis chlim.1 A V
Assertion chlimi H C F : H F v A A H

Proof

Step Hyp Ref Expression
1 chlim.1 A V
2 isch2 H C H S f x f : H f v x x H
3 2 simprbi H C f x f : H f v x x H
4 nnex V
5 fex F : H V F V
6 4 5 mpan2 F : H F V
7 6 adantr F : H F v A F V
8 feq1 f = F f : H F : H
9 breq1 f = F f v x F v x
10 8 9 anbi12d f = F f : H f v x F : H F v x
11 10 imbi1d f = F f : H f v x x H F : H F v x x H
12 11 albidv f = F x f : H f v x x H x F : H F v x x H
13 12 spcgv F V f x f : H f v x x H x F : H F v x x H
14 breq2 x = A F v x F v A
15 14 anbi2d x = A F : H F v x F : H F v A
16 eleq1 x = A x H A H
17 15 16 imbi12d x = A F : H F v x x H F : H F v A A H
18 1 17 spcv x F : H F v x x H F : H F v A A H
19 13 18 syl6 F V f x f : H f v x x H F : H F v A A H
20 7 19 syl F : H F v A f x f : H f v x x H F : H F v A A H
21 20 pm2.43b f x f : H f v x x H F : H F v A A H
22 3 21 syl H C F : H F v A A H
23 22 3impib H C F : H F v A A H