Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Properties of Hilbert subspaces
Hilbert lattice operations
chlubii
Metamath Proof Explorer
Description: Hilbert lattice join is the least upper bound of two elements (one
direction of chlubi ). (Contributed by NM , 15-Oct-1999)
(New usage is discouraged.)
Ref
Expression
Hypotheses
ch0le.1
⊢ A ∈ C ℋ
chjcl.2
⊢ B ∈ C ℋ
chlub.1
⊢ C ∈ C ℋ
Assertion
chlubii
⊢ A ⊆ C ∧ B ⊆ C → A ∨ ℋ B ⊆ C
Proof
Step
Hyp
Ref
Expression
1
ch0le.1
⊢ A ∈ C ℋ
2
chjcl.2
⊢ B ∈ C ℋ
3
chlub.1
⊢ C ∈ C ℋ
4
1 2 3
chlubi
⊢ A ⊆ C ∧ B ⊆ C ↔ A ∨ ℋ B ⊆ C
5
4
biimpi
⊢ A ⊆ C ∧ B ⊆ C → A ∨ ℋ B ⊆ C