Metamath Proof Explorer


Theorem chmaidscmat

Description: The characteristic polynomial of a matrix multiplied with the identity matrix is a scalar matrix. (Contributed by AV, 30-Oct-2019) (Revised by AV, 5-Jul-2022)

Ref Expression
Hypotheses chmaidscmat.a A = N Mat R
chmaidscmat.b B = Base A
chmaidscmat.c C = N CharPlyMat R
chmaidscmat.p P = Poly 1 R
chmaidscmat.e E = Base P
chmaidscmat.y Y = N Mat P
chmaidscmat.k K = Base Y
chmaidscmat.m · ˙ = Y
chmaidscmat.1 1 ˙ = 1 Y
chmaidscmat.d S = N ScMat P
Assertion chmaidscmat N Fin R CRing M B C M · ˙ 1 ˙ S

Proof

Step Hyp Ref Expression
1 chmaidscmat.a A = N Mat R
2 chmaidscmat.b B = Base A
3 chmaidscmat.c C = N CharPlyMat R
4 chmaidscmat.p P = Poly 1 R
5 chmaidscmat.e E = Base P
6 chmaidscmat.y Y = N Mat P
7 chmaidscmat.k K = Base Y
8 chmaidscmat.m · ˙ = Y
9 chmaidscmat.1 1 ˙ = 1 Y
10 chmaidscmat.d S = N ScMat P
11 crngring R CRing R Ring
12 4 ply1ring R Ring P Ring
13 11 12 syl R CRing P Ring
14 13 anim2i N Fin R CRing N Fin P Ring
15 14 3adant3 N Fin R CRing M B N Fin P Ring
16 3 1 2 4 5 chpmatply1 N Fin R CRing M B C M E
17 4 6 pmatring N Fin R Ring Y Ring
18 11 17 sylan2 N Fin R CRing Y Ring
19 7 9 ringidcl Y Ring 1 ˙ K
20 18 19 syl N Fin R CRing 1 ˙ K
21 20 3adant3 N Fin R CRing M B 1 ˙ K
22 5 6 7 8 matvscl N Fin P Ring C M E 1 ˙ K C M · ˙ 1 ˙ K
23 15 16 21 22 syl12anc N Fin R CRing M B C M · ˙ 1 ˙ K
24 risset C M E c E c = C M
25 oveq1 C M = c C M · ˙ 1 ˙ = c · ˙ 1 ˙
26 25 eqcoms c = C M C M · ˙ 1 ˙ = c · ˙ 1 ˙
27 26 a1i N Fin R CRing M B c E c = C M C M · ˙ 1 ˙ = c · ˙ 1 ˙
28 27 reximdva N Fin R CRing M B c E c = C M c E C M · ˙ 1 ˙ = c · ˙ 1 ˙
29 28 com12 c E c = C M N Fin R CRing M B c E C M · ˙ 1 ˙ = c · ˙ 1 ˙
30 24 29 sylbi C M E N Fin R CRing M B c E C M · ˙ 1 ˙ = c · ˙ 1 ˙
31 16 30 mpcom N Fin R CRing M B c E C M · ˙ 1 ˙ = c · ˙ 1 ˙
32 5 6 7 9 8 10 scmatel N Fin P Ring C M · ˙ 1 ˙ S C M · ˙ 1 ˙ K c E C M · ˙ 1 ˙ = c · ˙ 1 ˙
33 15 32 syl N Fin R CRing M B C M · ˙ 1 ˙ S C M · ˙ 1 ˙ K c E C M · ˙ 1 ˙ = c · ˙ 1 ˙
34 23 31 33 mpbir2and N Fin R CRing M B C M · ˙ 1 ˙ S