Metamath Proof Explorer


Theorem chmatcl

Description: Closure of the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019) (Proof shortened by AV, 29-Nov-2019)

Ref Expression
Hypotheses chmatcl.a A = N Mat R
chmatcl.b B = Base A
chmatcl.p P = Poly 1 R
chmatcl.y Y = N Mat P
chmatcl.x X = var 1 R
chmatcl.t T = N matToPolyMat R
chmatcl.s - ˙ = - Y
chmatcl.m · ˙ = Y
chmatcl.1 1 ˙ = 1 Y
chmatcl.h H = X · ˙ 1 ˙ - ˙ T M
Assertion chmatcl N Fin R Ring M B H Base Y

Proof

Step Hyp Ref Expression
1 chmatcl.a A = N Mat R
2 chmatcl.b B = Base A
3 chmatcl.p P = Poly 1 R
4 chmatcl.y Y = N Mat P
5 chmatcl.x X = var 1 R
6 chmatcl.t T = N matToPolyMat R
7 chmatcl.s - ˙ = - Y
8 chmatcl.m · ˙ = Y
9 chmatcl.1 1 ˙ = 1 Y
10 chmatcl.h H = X · ˙ 1 ˙ - ˙ T M
11 3 4 pmatring N Fin R Ring Y Ring
12 ringgrp Y Ring Y Grp
13 11 12 syl N Fin R Ring Y Grp
14 13 3adant3 N Fin R Ring M B Y Grp
15 3 ply1ring R Ring P Ring
16 15 anim2i N Fin R Ring N Fin P Ring
17 16 3adant3 N Fin R Ring M B N Fin P Ring
18 eqid Base P = Base P
19 5 3 18 vr1cl R Ring X Base P
20 19 3ad2ant2 N Fin R Ring M B X Base P
21 11 3adant3 N Fin R Ring M B Y Ring
22 eqid Base Y = Base Y
23 22 9 ringidcl Y Ring 1 ˙ Base Y
24 21 23 syl N Fin R Ring M B 1 ˙ Base Y
25 18 4 22 8 matvscl N Fin P Ring X Base P 1 ˙ Base Y X · ˙ 1 ˙ Base Y
26 17 20 24 25 syl12anc N Fin R Ring M B X · ˙ 1 ˙ Base Y
27 6 1 2 3 4 mat2pmatbas N Fin R Ring M B T M Base Y
28 22 7 grpsubcl Y Grp X · ˙ 1 ˙ Base Y T M Base Y X · ˙ 1 ˙ - ˙ T M Base Y
29 14 26 27 28 syl3anc N Fin R Ring M B X · ˙ 1 ˙ - ˙ T M Base Y
30 10 29 eqeltrid N Fin R Ring M B H Base Y