Metamath Proof Explorer


Theorem chne0

Description: A nonzero closed subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion chne0 A C A 0 x A x 0

Proof

Step Hyp Ref Expression
1 neeq1 A = if A C A 0 A 0 if A C A 0 0
2 rexeq A = if A C A 0 x A x 0 x if A C A 0 x 0
3 1 2 bibi12d A = if A C A 0 A 0 x A x 0 if A C A 0 0 x if A C A 0 x 0
4 h0elch 0 C
5 4 elimel if A C A 0 C
6 5 chne0i if A C A 0 0 x if A C A 0 x 0
7 3 6 dedth A C A 0 x A x 0