Metamath Proof Explorer


Theorem chnlei

Description: Equivalent expressions for "not less than" in the Hilbert lattice. (Contributed by NM, 5-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 A C
chjcl.2 B C
Assertion chnlei ¬ B A A A B

Proof

Step Hyp Ref Expression
1 ch0le.1 A C
2 chjcl.2 B C
3 1 2 chub1i A A B
4 3 biantrur ¬ A = A B A A B ¬ A = A B
5 2 1 chlejb1i B A B A = A
6 eqcom B A = A A = B A
7 2 1 chjcomi B A = A B
8 7 eqeq2i A = B A A = A B
9 5 6 8 3bitri B A A = A B
10 9 notbii ¬ B A ¬ A = A B
11 dfpss2 A A B A A B ¬ A = A B
12 4 10 11 3bitr4i ¬ B A A A B