Metamath Proof Explorer


Theorem choc0

Description: The orthocomplement of the zero subspace is the unit subspace. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion choc0 0 =

Proof

Step Hyp Ref Expression
1 h0elsh 0 S
2 shocel 0 S x 0 x y 0 x ih y = 0
3 1 2 ax-mp x 0 x y 0 x ih y = 0
4 hi02 x x ih 0 = 0
5 df-ral y 0 x ih y = 0 y y 0 x ih y = 0
6 elch0 y 0 y = 0
7 6 imbi1i y 0 x ih y = 0 y = 0 x ih y = 0
8 7 albii y y 0 x ih y = 0 y y = 0 x ih y = 0
9 ax-hv0cl 0
10 9 elexi 0 V
11 oveq2 y = 0 x ih y = x ih 0
12 11 eqeq1d y = 0 x ih y = 0 x ih 0 = 0
13 10 12 ceqsalv y y = 0 x ih y = 0 x ih 0 = 0
14 8 13 bitri y y 0 x ih y = 0 x ih 0 = 0
15 5 14 bitri y 0 x ih y = 0 x ih 0 = 0
16 4 15 sylibr x y 0 x ih y = 0
17 abai x y 0 x ih y = 0 x x y 0 x ih y = 0
18 16 17 mpbiran2 x y 0 x ih y = 0 x
19 3 18 bitri x 0 x
20 19 eqriv 0 =