Step |
Hyp |
Ref |
Expression |
1 |
|
choicefi.a |
|
2 |
|
choicefi.b |
|
3 |
|
choicefi.n |
|
4 |
|
mptfi |
|
5 |
1 4
|
syl |
|
6 |
|
rnfi |
|
7 |
5 6
|
syl |
|
8 |
|
fnchoice |
|
9 |
7 8
|
syl |
|
10 |
|
simpl |
|
11 |
|
simprl |
|
12 |
|
nfv |
|
13 |
|
nfra1 |
|
14 |
12 13
|
nfan |
|
15 |
|
rspa |
|
16 |
15
|
adantll |
|
17 |
|
vex |
|
18 |
|
eqid |
|
19 |
18
|
elrnmpt |
|
20 |
17 19
|
ax-mp |
|
21 |
20
|
biimpi |
|
22 |
21
|
adantl |
|
23 |
|
simp3 |
|
24 |
3
|
3adant3 |
|
25 |
23 24
|
eqnetrd |
|
26 |
25
|
3exp |
|
27 |
26
|
rexlimdv |
|
28 |
27
|
adantr |
|
29 |
22 28
|
mpd |
|
30 |
29
|
adantlr |
|
31 |
|
id |
|
32 |
31
|
imp |
|
33 |
16 30 32
|
syl2anc |
|
34 |
33
|
ex |
|
35 |
14 34
|
ralrimi |
|
36 |
|
rsp |
|
37 |
35 36
|
syl |
|
38 |
14 37
|
ralrimi |
|
39 |
38
|
adantrl |
|
40 |
|
vex |
|
41 |
40
|
a1i |
|
42 |
1
|
mptexd |
|
43 |
|
coexg |
|
44 |
41 42 43
|
syl2anc |
|
45 |
44
|
3ad2ant1 |
|
46 |
|
simpr |
|
47 |
2
|
ralrimiva |
|
48 |
18
|
fnmpt |
|
49 |
47 48
|
syl |
|
50 |
49
|
adantr |
|
51 |
|
ssidd |
|
52 |
|
fnco |
|
53 |
46 50 51 52
|
syl3anc |
|
54 |
53
|
3adant3 |
|
55 |
|
nfv |
|
56 |
|
nfcv |
|
57 |
|
nfmpt1 |
|
58 |
57
|
nfrn |
|
59 |
56 58
|
nffn |
|
60 |
|
nfv |
|
61 |
58 60
|
nfralw |
|
62 |
55 59 61
|
nf3an |
|
63 |
|
funmpt |
|
64 |
63
|
a1i |
|
65 |
|
simpr |
|
66 |
18 2
|
dmmptd |
|
67 |
66
|
eqcomd |
|
68 |
67
|
adantr |
|
69 |
65 68
|
eleqtrd |
|
70 |
|
fvco |
|
71 |
64 69 70
|
syl2anc |
|
72 |
18
|
fvmpt2 |
|
73 |
65 2 72
|
syl2anc |
|
74 |
73
|
fveq2d |
|
75 |
71 74
|
eqtrd |
|
76 |
75
|
3ad2antl1 |
|
77 |
18
|
elrnmpt1 |
|
78 |
65 2 77
|
syl2anc |
|
79 |
78
|
3ad2antl1 |
|
80 |
|
simpl3 |
|
81 |
|
fveq2 |
|
82 |
|
id |
|
83 |
81 82
|
eleq12d |
|
84 |
83
|
rspcva |
|
85 |
79 80 84
|
syl2anc |
|
86 |
76 85
|
eqeltrd |
|
87 |
86
|
ex |
|
88 |
62 87
|
ralrimi |
|
89 |
54 88
|
jca |
|
90 |
|
fneq1 |
|
91 |
|
nfcv |
|
92 |
56 57
|
nfco |
|
93 |
91 92
|
nfeq |
|
94 |
|
fveq1 |
|
95 |
94
|
eleq1d |
|
96 |
93 95
|
ralbid |
|
97 |
90 96
|
anbi12d |
|
98 |
97
|
spcegv |
|
99 |
45 89 98
|
sylc |
|
100 |
10 11 39 99
|
syl3anc |
|
101 |
100
|
ex |
|
102 |
101
|
exlimdv |
|
103 |
9 102
|
mpd |
|