Step |
Hyp |
Ref |
Expression |
1 |
|
chordthm.angdef |
|
2 |
|
chordthm.A |
|
3 |
|
chordthm.B |
|
4 |
|
chordthm.C |
|
5 |
|
chordthm.D |
|
6 |
|
chordthm.P |
|
7 |
|
chordthm.AneP |
|
8 |
|
chordthm.BneP |
|
9 |
|
chordthm.CneP |
|
10 |
|
chordthm.DneP |
|
11 |
|
chordthm.APB |
|
12 |
|
chordthm.CPD |
|
13 |
|
chordthm.Q |
|
14 |
|
chordthm.ABcirc |
|
15 |
|
chordthm.ACcirc |
|
16 |
|
chordthm.ADcirc |
|
17 |
10
|
necomd |
|
18 |
1 4 6 5 9 17
|
angpieqvd |
|
19 |
12 18
|
mpbid |
|
20 |
8
|
necomd |
|
21 |
1 2 6 3 7 20
|
angpieqvd |
|
22 |
11 21
|
mpbid |
|
23 |
22
|
adantr |
|
24 |
14
|
ad2antrr |
|
25 |
16
|
ad2antrr |
|
26 |
24 25
|
eqtr3d |
|
27 |
26
|
oveq1d |
|
28 |
27
|
oveq1d |
|
29 |
2
|
ad2antrr |
|
30 |
3
|
ad2antrr |
|
31 |
13
|
ad2antrr |
|
32 |
|
ioossicc |
|
33 |
|
simprl |
|
34 |
32 33
|
sselid |
|
35 |
|
simprr |
|
36 |
29 30 31 34 35 24
|
chordthmlem5 |
|
37 |
4
|
ad2antrr |
|
38 |
5
|
ad2antrr |
|
39 |
|
simplrl |
|
40 |
32 39
|
sselid |
|
41 |
|
simplrr |
|
42 |
15
|
ad2antrr |
|
43 |
42 25
|
eqtr3d |
|
44 |
37 38 31 40 41 43
|
chordthmlem5 |
|
45 |
28 36 44
|
3eqtr4d |
|
46 |
23 45
|
rexlimddv |
|
47 |
19 46
|
rexlimddv |
|