Step |
Hyp |
Ref |
Expression |
1 |
|
chordthmlem.angdef |
|
2 |
|
chordthmlem.A |
|
3 |
|
chordthmlem.B |
|
4 |
|
chordthmlem.Q |
|
5 |
|
chordthmlem.M |
|
6 |
|
chordthmlem.ABequidistQ |
|
7 |
|
chordthmlem.AneB |
|
8 |
|
chordthmlem.QneM |
|
9 |
|
negpitopissre |
|
10 |
2 3
|
addcld |
|
11 |
10
|
halfcld |
|
12 |
5 11
|
eqeltrd |
|
13 |
4 12
|
subcld |
|
14 |
4 12 8
|
subne0d |
|
15 |
3 12
|
subcld |
|
16 |
5
|
oveq1d |
|
17 |
12
|
times2d |
|
18 |
|
2cnd |
|
19 |
|
2ne0 |
|
20 |
19
|
a1i |
|
21 |
10 18 20
|
divcan1d |
|
22 |
16 17 21
|
3eqtr3d |
|
23 |
2 3 3 7
|
addneintr2d |
|
24 |
22 23
|
eqnetrd |
|
25 |
24
|
neneqd |
|
26 |
|
oveq12 |
|
27 |
26
|
anidms |
|
28 |
25 27
|
nsyl |
|
29 |
28
|
neqned |
|
30 |
29
|
necomd |
|
31 |
3 12 30
|
subne0d |
|
32 |
1 13 14 15 31
|
angcld |
|
33 |
9 32
|
sselid |
|
34 |
33
|
recnd |
|
35 |
34
|
coscld |
|
36 |
3 12
|
negsubdi2d |
|
37 |
12 12 2 3
|
addsubeq4d |
|
38 |
22 37
|
mpbid |
|
39 |
36 38
|
eqtr4d |
|
40 |
39
|
oveq2d |
|
41 |
40
|
fveq2d |
|
42 |
1 13 14 15 31
|
cosangneg2d |
|
43 |
2 2 3 7
|
addneintrd |
|
44 |
43 22
|
neeqtrrd |
|
45 |
44
|
necomd |
|
46 |
45
|
neneqd |
|
47 |
|
oveq12 |
|
48 |
47
|
anidms |
|
49 |
46 48
|
nsyl |
|
50 |
49
|
neqned |
|
51 |
|
eqidd |
|
52 |
2 12
|
subcld |
|
53 |
52
|
absnegd |
|
54 |
2 12
|
negsubdi2d |
|
55 |
54
|
fveq2d |
|
56 |
38
|
fveq2d |
|
57 |
53 55 56
|
3eqtr3d |
|
58 |
1 4 12 2 4 12 3 8 50 8 29 51 57 6
|
ssscongptld |
|
59 |
41 42 58
|
3eqtr3rd |
|
60 |
35 59
|
eqnegad |
|
61 |
|
coseq0negpitopi |
|
62 |
32 61
|
syl |
|
63 |
60 62
|
mpbid |
|