Metamath Proof Explorer


Theorem chordthmlem2

Description: If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then QMP is a right angle. This is proven by reduction to the special case chordthmlem , where P = B, and using angrtmuld to observe that QMP is right iff QMB is. (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses chordthmlem2.angdef F = x 0 , y 0 log y x
chordthmlem2.A φ A
chordthmlem2.B φ B
chordthmlem2.Q φ Q
chordthmlem2.X φ X
chordthmlem2.M φ M = A + B 2
chordthmlem2.P φ P = X A + 1 X B
chordthmlem2.ABequidistQ φ A Q = B Q
chordthmlem2.PneM φ P M
chordthmlem2.QneM φ Q M
Assertion chordthmlem2 φ Q M F P M π 2 π 2

Proof

Step Hyp Ref Expression
1 chordthmlem2.angdef F = x 0 , y 0 log y x
2 chordthmlem2.A φ A
3 chordthmlem2.B φ B
4 chordthmlem2.Q φ Q
5 chordthmlem2.X φ X
6 chordthmlem2.M φ M = A + B 2
7 chordthmlem2.P φ P = X A + 1 X B
8 chordthmlem2.ABequidistQ φ A Q = B Q
9 chordthmlem2.PneM φ P M
10 chordthmlem2.QneM φ Q M
11 2re 2
12 11 a1i φ 2
13 2ne0 2 0
14 13 a1i φ 2 0
15 12 14 rereccld φ 1 2
16 15 5 resubcld φ 1 2 X
17 16 recnd φ 1 2 X
18 3 2 subcld φ B A
19 15 recnd φ 1 2
20 5 recnd φ X
21 19 20 18 subdird φ 1 2 X B A = 1 2 B A X B A
22 2cnd φ 2
23 3 22 14 divcan4d φ B 2 2 = B
24 3 times2d φ B 2 = B + B
25 24 oveq1d φ B 2 2 = B + B 2
26 23 25 eqtr3d φ B = B + B 2
27 26 6 oveq12d φ B M = B + B 2 A + B 2
28 3 3 addcld φ B + B
29 2 3 addcld φ A + B
30 28 29 22 14 divsubdird φ B + B - A + B 2 = B + B 2 A + B 2
31 3 2 3 pnpcan2d φ B + B - A + B = B A
32 31 oveq1d φ B + B - A + B 2 = B A 2
33 27 30 32 3eqtr2d φ B M = B A 2
34 18 22 14 divrec2d φ B A 2 = 1 2 B A
35 33 34 eqtrd φ B M = 1 2 B A
36 20 2 mulcld φ X A
37 1cnd φ 1
38 37 20 subcld φ 1 X
39 38 3 mulcld φ 1 X B
40 36 39 addcld φ X A + 1 X B
41 7 40 eqeltrd φ P
42 2 41 3 20 affineequiv φ P = X A + 1 X B B P = X B A
43 7 42 mpbid φ B P = X B A
44 35 43 oveq12d φ B - M - B P = 1 2 B A X B A
45 29 halfcld φ A + B 2
46 6 45 eqeltrd φ M
47 3 46 41 nnncan1d φ B - M - B P = P M
48 21 44 47 3eqtr2rd φ P M = 1 2 X B A
49 41 46 9 subne0d φ P M 0
50 48 49 eqnetrrd φ 1 2 X B A 0
51 17 18 50 mulne0bbd φ B A 0
52 3 2 51 subne0ad φ B A
53 52 necomd φ A B
54 1 2 3 4 6 8 53 10 chordthmlem φ Q M F B M π 2 π 2
55 4 46 subcld φ Q M
56 41 46 subcld φ P M
57 3 46 subcld φ B M
58 4 46 10 subne0d φ Q M 0
59 22 14 recne0d φ 1 2 0
60 19 18 59 51 mulne0d φ 1 2 B A 0
61 35 60 eqnetrd φ B M 0
62 35 48 oveq12d φ B M P M = 1 2 B A 1 2 X B A
63 17 18 50 mulne0bad φ 1 2 X 0
64 19 17 18 63 51 divcan5rd φ 1 2 B A 1 2 X B A = 1 2 1 2 X
65 62 64 eqtrd φ B M P M = 1 2 1 2 X
66 15 16 63 redivcld φ 1 2 1 2 X
67 65 66 eqeltrd φ B M P M
68 1 55 56 57 58 49 61 67 angrtmuld φ Q M F P M π 2 π 2 Q M F B M π 2 π 2
69 54 68 mpbird φ Q M F P M π 2 π 2