Step |
Hyp |
Ref |
Expression |
1 |
|
chordthmlem2.angdef |
|
2 |
|
chordthmlem2.A |
|
3 |
|
chordthmlem2.B |
|
4 |
|
chordthmlem2.Q |
|
5 |
|
chordthmlem2.X |
|
6 |
|
chordthmlem2.M |
|
7 |
|
chordthmlem2.P |
|
8 |
|
chordthmlem2.ABequidistQ |
|
9 |
|
chordthmlem2.PneM |
|
10 |
|
chordthmlem2.QneM |
|
11 |
|
2re |
|
12 |
11
|
a1i |
|
13 |
|
2ne0 |
|
14 |
13
|
a1i |
|
15 |
12 14
|
rereccld |
|
16 |
15 5
|
resubcld |
|
17 |
16
|
recnd |
|
18 |
3 2
|
subcld |
|
19 |
15
|
recnd |
|
20 |
5
|
recnd |
|
21 |
19 20 18
|
subdird |
|
22 |
|
2cnd |
|
23 |
3 22 14
|
divcan4d |
|
24 |
3
|
times2d |
|
25 |
24
|
oveq1d |
|
26 |
23 25
|
eqtr3d |
|
27 |
26 6
|
oveq12d |
|
28 |
3 3
|
addcld |
|
29 |
2 3
|
addcld |
|
30 |
28 29 22 14
|
divsubdird |
|
31 |
3 2 3
|
pnpcan2d |
|
32 |
31
|
oveq1d |
|
33 |
27 30 32
|
3eqtr2d |
|
34 |
18 22 14
|
divrec2d |
|
35 |
33 34
|
eqtrd |
|
36 |
20 2
|
mulcld |
|
37 |
|
1cnd |
|
38 |
37 20
|
subcld |
|
39 |
38 3
|
mulcld |
|
40 |
36 39
|
addcld |
|
41 |
7 40
|
eqeltrd |
|
42 |
2 41 3 20
|
affineequiv |
|
43 |
7 42
|
mpbid |
|
44 |
35 43
|
oveq12d |
|
45 |
29
|
halfcld |
|
46 |
6 45
|
eqeltrd |
|
47 |
3 46 41
|
nnncan1d |
|
48 |
21 44 47
|
3eqtr2rd |
|
49 |
41 46 9
|
subne0d |
|
50 |
48 49
|
eqnetrrd |
|
51 |
17 18 50
|
mulne0bbd |
|
52 |
3 2 51
|
subne0ad |
|
53 |
52
|
necomd |
|
54 |
1 2 3 4 6 8 53 10
|
chordthmlem |
|
55 |
4 46
|
subcld |
|
56 |
41 46
|
subcld |
|
57 |
3 46
|
subcld |
|
58 |
4 46 10
|
subne0d |
|
59 |
22 14
|
recne0d |
|
60 |
19 18 59 51
|
mulne0d |
|
61 |
35 60
|
eqnetrd |
|
62 |
35 48
|
oveq12d |
|
63 |
17 18 50
|
mulne0bad |
|
64 |
19 17 18 63 51
|
divcan5rd |
|
65 |
62 64
|
eqtrd |
|
66 |
15 16 63
|
redivcld |
|
67 |
65 66
|
eqeltrd |
|
68 |
1 55 56 57 58 49 61 67
|
angrtmuld |
|
69 |
54 68
|
mpbird |
|