Step |
Hyp |
Ref |
Expression |
1 |
|
chordthmlem3.A |
|
2 |
|
chordthmlem3.B |
|
3 |
|
chordthmlem3.Q |
|
4 |
|
chordthmlem3.X |
|
5 |
|
chordthmlem3.M |
|
6 |
|
chordthmlem3.P |
|
7 |
|
chordthmlem3.ABequidistQ |
|
8 |
1 2
|
addcld |
|
9 |
8
|
halfcld |
|
10 |
5 9
|
eqeltrd |
|
11 |
3 10
|
subcld |
|
12 |
11
|
abscld |
|
13 |
12
|
recnd |
|
14 |
13
|
sqcld |
|
15 |
14
|
adantr |
|
16 |
15
|
addid1d |
|
17 |
4
|
recnd |
|
18 |
17 1
|
mulcld |
|
19 |
|
1cnd |
|
20 |
19 17
|
subcld |
|
21 |
20 2
|
mulcld |
|
22 |
18 21
|
addcld |
|
23 |
6 22
|
eqeltrd |
|
24 |
23
|
adantr |
|
25 |
|
simpr |
|
26 |
24 25
|
subeq0bd |
|
27 |
26
|
abs00bd |
|
28 |
27
|
sq0id |
|
29 |
28
|
oveq2d |
|
30 |
3
|
adantr |
|
31 |
30 24
|
abssubd |
|
32 |
25
|
oveq2d |
|
33 |
32
|
fveq2d |
|
34 |
31 33
|
eqtr3d |
|
35 |
34
|
oveq1d |
|
36 |
16 29 35
|
3eqtr4rd |
|
37 |
23 10
|
subcld |
|
38 |
37
|
abscld |
|
39 |
38
|
recnd |
|
40 |
39
|
sqcld |
|
41 |
40
|
adantr |
|
42 |
41
|
addid2d |
|
43 |
3
|
adantr |
|
44 |
|
simpr |
|
45 |
43 44
|
subeq0bd |
|
46 |
45
|
abs00bd |
|
47 |
46
|
sq0id |
|
48 |
47
|
oveq1d |
|
49 |
44
|
oveq2d |
|
50 |
49
|
fveq2d |
|
51 |
50
|
oveq1d |
|
52 |
42 48 51
|
3eqtr4rd |
|
53 |
23
|
adantr |
|
54 |
3
|
adantr |
|
55 |
10
|
adantr |
|
56 |
|
simprl |
|
57 |
|
simprr |
|
58 |
|
eqid |
|
59 |
1
|
adantr |
|
60 |
2
|
adantr |
|
61 |
4
|
adantr |
|
62 |
5
|
adantr |
|
63 |
6
|
adantr |
|
64 |
7
|
adantr |
|
65 |
58 59 60 54 61 62 63 64 56 57
|
chordthmlem2 |
|
66 |
|
eqid |
|
67 |
|
eqid |
|
68 |
|
eqid |
|
69 |
|
eqid |
|
70 |
58 66 67 68 69
|
pythag |
|
71 |
53 54 55 56 57 65 70
|
syl321anc |
|
72 |
36 52 71
|
pm2.61da2ne |
|