Metamath Proof Explorer


Theorem chp0mat

Description: The characteristic polynomial of the zero matrix. (Contributed by AV, 18-Aug-2019)

Ref Expression
Hypotheses chp0mat.c C = N CharPlyMat R
chp0mat.p P = Poly 1 R
chp0mat.a A = N Mat R
chp0mat.x X = var 1 R
chp0mat.g G = mulGrp P
chp0mat.m × ˙ = G
chp0mat.0 0 ˙ = 0 A
Assertion chp0mat N Fin R CRing C 0 ˙ = N × ˙ X

Proof

Step Hyp Ref Expression
1 chp0mat.c C = N CharPlyMat R
2 chp0mat.p P = Poly 1 R
3 chp0mat.a A = N Mat R
4 chp0mat.x X = var 1 R
5 chp0mat.g G = mulGrp P
6 chp0mat.m × ˙ = G
7 chp0mat.0 0 ˙ = 0 A
8 simpl N Fin R CRing N Fin
9 simpr N Fin R CRing R CRing
10 crngring R CRing R Ring
11 3 matring N Fin R Ring A Ring
12 10 11 sylan2 N Fin R CRing A Ring
13 ringgrp A Ring A Grp
14 eqid Base A = Base A
15 14 7 grpidcl A Grp 0 ˙ Base A
16 12 13 15 3syl N Fin R CRing 0 ˙ Base A
17 eqid 0 R = 0 R
18 3 17 mat0op N Fin R Ring 0 A = x N , y N 0 R
19 7 18 syl5eq N Fin R Ring 0 ˙ = x N , y N 0 R
20 10 19 sylan2 N Fin R CRing 0 ˙ = x N , y N 0 R
21 20 adantr N Fin R CRing i N j N 0 ˙ = x N , y N 0 R
22 eqidd N Fin R CRing i N j N x = i y = j 0 R = 0 R
23 simpl i N j N i N
24 23 adantl N Fin R CRing i N j N i N
25 simpr i N j N j N
26 25 adantl N Fin R CRing i N j N j N
27 fvexd N Fin R CRing i N j N 0 R V
28 21 22 24 26 27 ovmpod N Fin R CRing i N j N i 0 ˙ j = 0 R
29 28 a1d N Fin R CRing i N j N i j i 0 ˙ j = 0 R
30 29 ralrimivva N Fin R CRing i N j N i j i 0 ˙ j = 0 R
31 eqid algSc P = algSc P
32 eqid - P = - P
33 1 2 3 31 14 4 17 5 32 chpdmat N Fin R CRing 0 ˙ Base A i N j N i j i 0 ˙ j = 0 R C 0 ˙ = G k N X - P algSc P k 0 ˙ k
34 8 9 16 30 33 syl31anc N Fin R CRing C 0 ˙ = G k N X - P algSc P k 0 ˙ k
35 20 adantr N Fin R CRing k N 0 ˙ = x N , y N 0 R
36 eqidd N Fin R CRing k N x = k y = k 0 R = 0 R
37 simpr N Fin R CRing k N k N
38 fvexd N Fin R CRing k N 0 R V
39 35 36 37 37 38 ovmpod N Fin R CRing k N k 0 ˙ k = 0 R
40 39 fveq2d N Fin R CRing k N algSc P k 0 ˙ k = algSc P 0 R
41 10 adantl N Fin R CRing R Ring
42 eqid 0 P = 0 P
43 2 31 17 42 ply1scl0 R Ring algSc P 0 R = 0 P
44 41 43 syl N Fin R CRing algSc P 0 R = 0 P
45 44 adantr N Fin R CRing k N algSc P 0 R = 0 P
46 40 45 eqtrd N Fin R CRing k N algSc P k 0 ˙ k = 0 P
47 46 oveq2d N Fin R CRing k N X - P algSc P k 0 ˙ k = X - P 0 P
48 2 ply1ring R Ring P Ring
49 ringgrp P Ring P Grp
50 10 48 49 3syl R CRing P Grp
51 50 adantl N Fin R CRing P Grp
52 eqid Base P = Base P
53 4 2 52 vr1cl R Ring X Base P
54 41 53 syl N Fin R CRing X Base P
55 51 54 jca N Fin R CRing P Grp X Base P
56 55 adantr N Fin R CRing k N P Grp X Base P
57 52 42 32 grpsubid1 P Grp X Base P X - P 0 P = X
58 56 57 syl N Fin R CRing k N X - P 0 P = X
59 47 58 eqtrd N Fin R CRing k N X - P algSc P k 0 ˙ k = X
60 59 mpteq2dva N Fin R CRing k N X - P algSc P k 0 ˙ k = k N X
61 60 oveq2d N Fin R CRing G k N X - P algSc P k 0 ˙ k = G k N X
62 2 ply1crng R CRing P CRing
63 5 crngmgp P CRing G CMnd
64 cmnmnd G CMnd G Mnd
65 62 63 64 3syl R CRing G Mnd
66 65 adantl N Fin R CRing G Mnd
67 10 53 syl R CRing X Base P
68 67 adantl N Fin R CRing X Base P
69 5 52 mgpbas Base P = Base G
70 68 69 eleqtrdi N Fin R CRing X Base G
71 eqid Base G = Base G
72 71 6 gsumconst G Mnd N Fin X Base G G k N X = N × ˙ X
73 66 8 70 72 syl3anc N Fin R CRing G k N X = N × ˙ X
74 34 61 73 3eqtrd N Fin R CRing C 0 ˙ = N × ˙ X