Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
chp1
Next ⟩
ppi1i
Metamath Proof Explorer
Ascii
Unicode
Theorem
chp1
Description:
The second Chebyshev function at
1
.
(Contributed by
Mario Carneiro
, 9-Apr-2016)
Ref
Expression
Assertion
chp1
⊢
ψ
⁡
1
=
0
Proof
Step
Hyp
Ref
Expression
1
1re
⊢
1
∈
ℝ
2
chpval
⊢
1
∈
ℝ
→
ψ
⁡
1
=
∑
x
=
1
1
Λ
⁡
x
3
1
2
ax-mp
⊢
ψ
⁡
1
=
∑
x
=
1
1
Λ
⁡
x
4
elfz1eq
⊢
x
∈
1
…
1
→
x
=
1
5
4
fveq2d
⊢
x
∈
1
…
1
→
Λ
⁡
x
=
Λ
⁡
1
6
vma1
⊢
Λ
⁡
1
=
0
7
5
6
eqtrdi
⊢
x
∈
1
…
1
→
Λ
⁡
x
=
0
8
1z
⊢
1
∈
ℤ
9
flid
⊢
1
∈
ℤ
→
1
=
1
10
8
9
ax-mp
⊢
1
=
1
11
10
oveq2i
⊢
1
…
1
=
1
…
1
12
7
11
eleq2s
⊢
x
∈
1
…
1
→
Λ
⁡
x
=
0
13
12
sumeq2i
⊢
∑
x
=
1
1
Λ
⁡
x
=
∑
x
=
1
1
0
14
fzfi
⊢
1
…
1
∈
Fin
15
14
olci
⊢
1
…
1
⊆
ℤ
≥
1
∨
1
…
1
∈
Fin
16
sumz
⊢
1
…
1
⊆
ℤ
≥
1
∨
1
…
1
∈
Fin
→
∑
x
=
1
1
0
=
0
17
15
16
ax-mp
⊢
∑
x
=
1
1
0
=
0
18
3
13
17
3eqtri
⊢
ψ
⁡
1
=
0