Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
|
2 |
|
1red |
|
3 |
|
2re |
|
4 |
|
elicopnf |
|
5 |
3 4
|
ax-mp |
|
6 |
5
|
simplbi |
|
7 |
6
|
adantl |
|
8 |
|
0red |
|
9 |
3
|
a1i |
|
10 |
|
2pos |
|
11 |
10
|
a1i |
|
12 |
5
|
simprbi |
|
13 |
8 9 6 11 12
|
ltletrd |
|
14 |
6 13
|
elrpd |
|
15 |
14
|
adantl |
|
16 |
15
|
rpge0d |
|
17 |
7 16
|
resqrtcld |
|
18 |
15
|
relogcld |
|
19 |
17 18
|
remulcld |
|
20 |
12
|
adantl |
|
21 |
|
chtrpcl |
|
22 |
7 20 21
|
syl2anc |
|
23 |
19 22
|
rerpdivcld |
|
24 |
6
|
ssriv |
|
25 |
1
|
recnd |
|
26 |
|
rlimconst |
|
27 |
24 25 26
|
sylancr |
|
28 |
|
ovexd |
|
29 |
7 22
|
rerpdivcld |
|
30 |
|
ovexd |
|
31 |
|
eqidd |
|
32 |
7
|
recnd |
|
33 |
|
cxpsqrt |
|
34 |
32 33
|
syl |
|
35 |
34
|
oveq2d |
|
36 |
18
|
recnd |
|
37 |
15
|
rpsqrtcld |
|
38 |
37
|
rpcnne0d |
|
39 |
|
divcan5 |
|
40 |
36 38 38 39
|
syl3anc |
|
41 |
|
remsqsqrt |
|
42 |
7 16 41
|
syl2anc |
|
43 |
42
|
oveq2d |
|
44 |
35 40 43
|
3eqtr2d |
|
45 |
44
|
mpteq2dva |
|
46 |
28 29 30 31 45
|
offval2 |
|
47 |
15
|
rpne0d |
|
48 |
22
|
rpcnne0d |
|
49 |
19
|
recnd |
|
50 |
|
dmdcan |
|
51 |
32 47 48 49 50
|
syl211anc |
|
52 |
51
|
mpteq2dva |
|
53 |
46 52
|
eqtrd |
|
54 |
|
chto1lb |
|
55 |
14
|
ssriv |
|
56 |
55
|
a1i |
|
57 |
|
1rp |
|
58 |
|
rphalfcl |
|
59 |
57 58
|
ax-mp |
|
60 |
|
cxploglim |
|
61 |
59 60
|
ax-mp |
|
62 |
61
|
a1i |
|
63 |
56 62
|
rlimres2 |
|
64 |
|
o1rlimmul |
|
65 |
54 63 64
|
sylancr |
|
66 |
53 65
|
eqbrtrrd |
|
67 |
2 23 27 66
|
rlimadd |
|
68 |
|
1p0e1 |
|
69 |
67 68
|
breqtrdi |
|
70 |
|
1re |
|
71 |
|
readdcl |
|
72 |
70 23 71
|
sylancr |
|
73 |
|
chpcl |
|
74 |
7 73
|
syl |
|
75 |
74 22
|
rerpdivcld |
|
76 |
|
chtcl |
|
77 |
7 76
|
syl |
|
78 |
77 19
|
readdcld |
|
79 |
3
|
a1i |
|
80 |
|
1le2 |
|
81 |
80
|
a1i |
|
82 |
2 79 7 81 20
|
letrd |
|
83 |
|
chpub |
|
84 |
7 82 83
|
syl2anc |
|
85 |
74 78 22 84
|
lediv1dd |
|
86 |
22
|
rpcnd |
|
87 |
|
divdir |
|
88 |
86 49 48 87
|
syl3anc |
|
89 |
|
divid |
|
90 |
48 89
|
syl |
|
91 |
90
|
oveq1d |
|
92 |
88 91
|
eqtrd |
|
93 |
85 92
|
breqtrd |
|
94 |
93
|
adantrr |
|
95 |
86
|
mulid2d |
|
96 |
|
chtlepsi |
|
97 |
7 96
|
syl |
|
98 |
95 97
|
eqbrtrd |
|
99 |
2 74 22
|
lemuldivd |
|
100 |
98 99
|
mpbid |
|
101 |
100
|
adantrr |
|
102 |
1 1 69 72 75 94 101
|
rlimsqz2 |
|
103 |
102
|
mptru |
|