Metamath Proof Explorer


Theorem chpchtlim

Description: The psi and theta functions are asymptotic to each other, so is sufficient to prove either theta ( x ) / x ~>r 1 or psi ( x ) / x ~>r 1 to establish the PNT. (Contributed by Mario Carneiro, 8-Apr-2016)

Ref Expression
Assertion chpchtlim x 2 +∞ ψ x θ x 1

Proof

Step Hyp Ref Expression
1 1red 1
2 1red x 2 +∞ 1
3 2re 2
4 elicopnf 2 x 2 +∞ x 2 x
5 3 4 ax-mp x 2 +∞ x 2 x
6 5 simplbi x 2 +∞ x
7 6 adantl x 2 +∞ x
8 0red x 2 +∞ 0
9 3 a1i x 2 +∞ 2
10 2pos 0 < 2
11 10 a1i x 2 +∞ 0 < 2
12 5 simprbi x 2 +∞ 2 x
13 8 9 6 11 12 ltletrd x 2 +∞ 0 < x
14 6 13 elrpd x 2 +∞ x +
15 14 adantl x 2 +∞ x +
16 15 rpge0d x 2 +∞ 0 x
17 7 16 resqrtcld x 2 +∞ x
18 15 relogcld x 2 +∞ log x
19 17 18 remulcld x 2 +∞ x log x
20 12 adantl x 2 +∞ 2 x
21 chtrpcl x 2 x θ x +
22 7 20 21 syl2anc x 2 +∞ θ x +
23 19 22 rerpdivcld x 2 +∞ x log x θ x
24 6 ssriv 2 +∞
25 1 recnd 1
26 rlimconst 2 +∞ 1 x 2 +∞ 1 1
27 24 25 26 sylancr x 2 +∞ 1 1
28 ovexd 2 +∞ V
29 7 22 rerpdivcld x 2 +∞ x θ x
30 ovexd x 2 +∞ x log x x V
31 eqidd x 2 +∞ x θ x = x 2 +∞ x θ x
32 7 recnd x 2 +∞ x
33 cxpsqrt x x 1 2 = x
34 32 33 syl x 2 +∞ x 1 2 = x
35 34 oveq2d x 2 +∞ log x x 1 2 = log x x
36 18 recnd x 2 +∞ log x
37 15 rpsqrtcld x 2 +∞ x +
38 37 rpcnne0d x 2 +∞ x x 0
39 divcan5 log x x x 0 x x 0 x log x x x = log x x
40 36 38 38 39 syl3anc x 2 +∞ x log x x x = log x x
41 remsqsqrt x 0 x x x = x
42 7 16 41 syl2anc x 2 +∞ x x = x
43 42 oveq2d x 2 +∞ x log x x x = x log x x
44 35 40 43 3eqtr2d x 2 +∞ log x x 1 2 = x log x x
45 44 mpteq2dva x 2 +∞ log x x 1 2 = x 2 +∞ x log x x
46 28 29 30 31 45 offval2 x 2 +∞ x θ x × f x 2 +∞ log x x 1 2 = x 2 +∞ x θ x x log x x
47 15 rpne0d x 2 +∞ x 0
48 22 rpcnne0d x 2 +∞ θ x θ x 0
49 19 recnd x 2 +∞ x log x
50 dmdcan x x 0 θ x θ x 0 x log x x θ x x log x x = x log x θ x
51 32 47 48 49 50 syl211anc x 2 +∞ x θ x x log x x = x log x θ x
52 51 mpteq2dva x 2 +∞ x θ x x log x x = x 2 +∞ x log x θ x
53 46 52 eqtrd x 2 +∞ x θ x × f x 2 +∞ log x x 1 2 = x 2 +∞ x log x θ x
54 chto1lb x 2 +∞ x θ x 𝑂1
55 14 ssriv 2 +∞ +
56 55 a1i 2 +∞ +
57 1rp 1 +
58 rphalfcl 1 + 1 2 +
59 57 58 ax-mp 1 2 +
60 cxploglim 1 2 + x + log x x 1 2 0
61 59 60 ax-mp x + log x x 1 2 0
62 61 a1i x + log x x 1 2 0
63 56 62 rlimres2 x 2 +∞ log x x 1 2 0
64 o1rlimmul x 2 +∞ x θ x 𝑂1 x 2 +∞ log x x 1 2 0 x 2 +∞ x θ x × f x 2 +∞ log x x 1 2 0
65 54 63 64 sylancr x 2 +∞ x θ x × f x 2 +∞ log x x 1 2 0
66 53 65 eqbrtrrd x 2 +∞ x log x θ x 0
67 2 23 27 66 rlimadd x 2 +∞ 1 + x log x θ x 1 + 0
68 1p0e1 1 + 0 = 1
69 67 68 breqtrdi x 2 +∞ 1 + x log x θ x 1
70 1re 1
71 readdcl 1 x log x θ x 1 + x log x θ x
72 70 23 71 sylancr x 2 +∞ 1 + x log x θ x
73 chpcl x ψ x
74 7 73 syl x 2 +∞ ψ x
75 74 22 rerpdivcld x 2 +∞ ψ x θ x
76 chtcl x θ x
77 7 76 syl x 2 +∞ θ x
78 77 19 readdcld x 2 +∞ θ x + x log x
79 3 a1i x 2 +∞ 2
80 1le2 1 2
81 80 a1i x 2 +∞ 1 2
82 2 79 7 81 20 letrd x 2 +∞ 1 x
83 chpub x 1 x ψ x θ x + x log x
84 7 82 83 syl2anc x 2 +∞ ψ x θ x + x log x
85 74 78 22 84 lediv1dd x 2 +∞ ψ x θ x θ x + x log x θ x
86 22 rpcnd x 2 +∞ θ x
87 divdir θ x x log x θ x θ x 0 θ x + x log x θ x = θ x θ x + x log x θ x
88 86 49 48 87 syl3anc x 2 +∞ θ x + x log x θ x = θ x θ x + x log x θ x
89 divid θ x θ x 0 θ x θ x = 1
90 48 89 syl x 2 +∞ θ x θ x = 1
91 90 oveq1d x 2 +∞ θ x θ x + x log x θ x = 1 + x log x θ x
92 88 91 eqtrd x 2 +∞ θ x + x log x θ x = 1 + x log x θ x
93 85 92 breqtrd x 2 +∞ ψ x θ x 1 + x log x θ x
94 93 adantrr x 2 +∞ 1 x ψ x θ x 1 + x log x θ x
95 86 mulid2d x 2 +∞ 1 θ x = θ x
96 chtlepsi x θ x ψ x
97 7 96 syl x 2 +∞ θ x ψ x
98 95 97 eqbrtrd x 2 +∞ 1 θ x ψ x
99 2 74 22 lemuldivd x 2 +∞ 1 θ x ψ x 1 ψ x θ x
100 98 99 mpbid x 2 +∞ 1 ψ x θ x
101 100 adantrr x 2 +∞ 1 x 1 ψ x θ x
102 1 1 69 72 75 94 101 rlimsqz2 x 2 +∞ ψ x θ x 1
103 102 mptru x 2 +∞ ψ x θ x 1