Metamath Proof Explorer


Theorem chpdifbnd

Description: A bound on the difference of nearby psi values. Theorem 10.5.2 of Shapiro, p. 427. (Contributed by Mario Carneiro, 25-May-2016)

Ref Expression
Assertion chpdifbnd A 1 A c + x 1 +∞ y x A x ψ y ψ x 2 y x + c x log x

Proof

Step Hyp Ref Expression
1 selberg2b b + z 1 +∞ ψ z log z + n = 1 z Λ n ψ z n z 2 log z b
2 simpl A 1 A A
3 0red A 1 A 0
4 1red A 1 A 1
5 0lt1 0 < 1
6 5 a1i A 1 A 0 < 1
7 simpr A 1 A 1 A
8 3 4 2 6 7 ltletrd A 1 A 0 < A
9 2 8 elrpd A 1 A A +
10 9 adantr A 1 A b + z 1 +∞ ψ z log z + n = 1 z Λ n ψ z n z 2 log z b A +
11 simplr A 1 A b + z 1 +∞ ψ z log z + n = 1 z Λ n ψ z n z 2 log z b 1 A
12 simprl A 1 A b + z 1 +∞ ψ z log z + n = 1 z Λ n ψ z n z 2 log z b b +
13 simprr A 1 A b + z 1 +∞ ψ z log z + n = 1 z Λ n ψ z n z 2 log z b z 1 +∞ ψ z log z + n = 1 z Λ n ψ z n z 2 log z b
14 eqid b A + 1 + 2 A log A = b A + 1 + 2 A log A
15 10 11 12 13 14 chpdifbndlem2 A 1 A b + z 1 +∞ ψ z log z + n = 1 z Λ n ψ z n z 2 log z b c + x 1 +∞ y x A x ψ y ψ x 2 y x + c x log x
16 15 rexlimdvaa A 1 A b + z 1 +∞ ψ z log z + n = 1 z Λ n ψ z n z 2 log z b c + x 1 +∞ y x A x ψ y ψ x 2 y x + c x log x
17 1 16 mpi A 1 A c + x 1 +∞ y x A x ψ y ψ x 2 y x + c x log x