Step |
Hyp |
Ref |
Expression |
1 |
|
chpdmat.c |
|
2 |
|
chpdmat.p |
|
3 |
|
chpdmat.a |
|
4 |
|
chpdmat.s |
|
5 |
|
chpdmat.b |
|
6 |
|
chpdmat.x |
|
7 |
|
chpdmat.0 |
|
8 |
|
chpdmat.g |
|
9 |
|
chpdmat.m |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
1 3 5 2 10 11 12 6 13 14 15
|
chpmatval |
|
17 |
16
|
adantr |
|
18 |
2
|
ply1crng |
|
19 |
18
|
3ad2ant2 |
|
20 |
|
simp1 |
|
21 |
|
crngring |
|
22 |
21
|
3anim2i |
|
23 |
1 2 3 4 5 6 7 8 9 10 15 13 12 14
|
chpdmatlem1 |
|
24 |
22 23
|
syl |
|
25 |
19 20 24
|
3jca |
|
26 |
25
|
adantr |
|
27 |
22
|
anim1i |
|
28 |
27
|
anim1i |
|
29 |
1 2 3 4 5 6 7 8 9 10 15 13 12 14
|
chpdmatlem2 |
|
30 |
28 29
|
sylanl1 |
|
31 |
30
|
exp31 |
|
32 |
31
|
a2d |
|
33 |
32
|
ralimdva |
|
34 |
33
|
ralimdva |
|
35 |
34
|
imp |
|
36 |
|
eqid |
|
37 |
|
eqid |
|
38 |
11 10 36 8 37
|
mdetdiag |
|
39 |
26 35 38
|
sylc |
|
40 |
1 2 3 4 5 6 7 8 9 10 15 13 12 14
|
chpdmatlem3 |
|
41 |
22 40
|
sylan |
|
42 |
41
|
adantlr |
|
43 |
42
|
mpteq2dva |
|
44 |
43
|
oveq2d |
|
45 |
17 39 44
|
3eqtrd |
|