Metamath Proof Explorer


Theorem chpdmatlem2

Description: Lemma 2 for chpdmat . (Contributed by AV, 18-Aug-2019)

Ref Expression
Hypotheses chpdmat.c C = N CharPlyMat R
chpdmat.p P = Poly 1 R
chpdmat.a A = N Mat R
chpdmat.s S = algSc P
chpdmat.b B = Base A
chpdmat.x X = var 1 R
chpdmat.0 0 ˙ = 0 R
chpdmat.g G = mulGrp P
chpdmat.m - ˙ = - P
chpdmatlem.q Q = N Mat P
chpdmatlem.1 1 ˙ = 1 Q
chpdmatlem.m · ˙ = Q
chpdmatlem.z Z = - Q
chpdmatlem.t T = N matToPolyMat R
Assertion chpdmatlem2 N Fin R Ring M B i N j N i j i M j = 0 ˙ i X · ˙ 1 ˙ Z T M j = 0 P

Proof

Step Hyp Ref Expression
1 chpdmat.c C = N CharPlyMat R
2 chpdmat.p P = Poly 1 R
3 chpdmat.a A = N Mat R
4 chpdmat.s S = algSc P
5 chpdmat.b B = Base A
6 chpdmat.x X = var 1 R
7 chpdmat.0 0 ˙ = 0 R
8 chpdmat.g G = mulGrp P
9 chpdmat.m - ˙ = - P
10 chpdmatlem.q Q = N Mat P
11 chpdmatlem.1 1 ˙ = 1 Q
12 chpdmatlem.m · ˙ = Q
13 chpdmatlem.z Z = - Q
14 chpdmatlem.t T = N matToPolyMat R
15 2 ply1ring R Ring P Ring
16 15 3ad2ant2 N Fin R Ring M B P Ring
17 16 ad4antr N Fin R Ring M B i N j N i j i M j = 0 ˙ P Ring
18 1 2 3 4 5 6 7 8 9 10 11 12 chpdmatlem0 N Fin R Ring X · ˙ 1 ˙ Base Q
19 18 3adant3 N Fin R Ring M B X · ˙ 1 ˙ Base Q
20 19 ad4antr N Fin R Ring M B i N j N i j i M j = 0 ˙ X · ˙ 1 ˙ Base Q
21 14 3 5 2 10 mat2pmatbas N Fin R Ring M B T M Base Q
22 21 ad4antr N Fin R Ring M B i N j N i j i M j = 0 ˙ T M Base Q
23 simpr N Fin R Ring M B i N i N
24 23 anim1i N Fin R Ring M B i N j N i N j N
25 24 ad2antrr N Fin R Ring M B i N j N i j i M j = 0 ˙ i N j N
26 eqid Base Q = Base Q
27 10 26 13 9 matsubgcell P Ring X · ˙ 1 ˙ Base Q T M Base Q i N j N i X · ˙ 1 ˙ Z T M j = i X · ˙ 1 ˙ j - ˙ i T M j
28 17 20 22 25 27 syl121anc N Fin R Ring M B i N j N i j i M j = 0 ˙ i X · ˙ 1 ˙ Z T M j = i X · ˙ 1 ˙ j - ˙ i T M j
29 16 ad2antrr N Fin R Ring M B i N j N P Ring
30 eqid Base P = Base P
31 6 2 30 vr1cl R Ring X Base P
32 31 3ad2ant2 N Fin R Ring M B X Base P
33 2 10 pmatring N Fin R Ring Q Ring
34 33 3adant3 N Fin R Ring M B Q Ring
35 26 11 ringidcl Q Ring 1 ˙ Base Q
36 34 35 syl N Fin R Ring M B 1 ˙ Base Q
37 32 36 jca N Fin R Ring M B X Base P 1 ˙ Base Q
38 37 ad2antrr N Fin R Ring M B i N j N X Base P 1 ˙ Base Q
39 29 38 24 3jca N Fin R Ring M B i N j N P Ring X Base P 1 ˙ Base Q i N j N
40 39 ad2antrr N Fin R Ring M B i N j N i j i M j = 0 ˙ P Ring X Base P 1 ˙ Base Q i N j N
41 eqid P = P
42 10 26 30 12 41 matvscacell P Ring X Base P 1 ˙ Base Q i N j N i X · ˙ 1 ˙ j = X P i 1 ˙ j
43 40 42 syl N Fin R Ring M B i N j N i j i M j = 0 ˙ i X · ˙ 1 ˙ j = X P i 1 ˙ j
44 43 oveq1d N Fin R Ring M B i N j N i j i M j = 0 ˙ i X · ˙ 1 ˙ j - ˙ i T M j = X P i 1 ˙ j - ˙ i T M j
45 eqid 1 P = 1 P
46 eqid 0 P = 0 P
47 simpll1 N Fin R Ring M B i N j N N Fin
48 23 adantr N Fin R Ring M B i N j N i N
49 simpr N Fin R Ring M B i N j N j N
50 10 45 46 47 29 48 49 11 mat1ov N Fin R Ring M B i N j N i 1 ˙ j = if i = j 1 P 0 P
51 ifnefalse i j if i = j 1 P 0 P = 0 P
52 50 51 sylan9eq N Fin R Ring M B i N j N i j i 1 ˙ j = 0 P
53 52 oveq2d N Fin R Ring M B i N j N i j X P i 1 ˙ j = X P 0 P
54 15 31 jca R Ring P Ring X Base P
55 54 3ad2ant2 N Fin R Ring M B P Ring X Base P
56 30 41 46 ringrz P Ring X Base P X P 0 P = 0 P
57 55 56 syl N Fin R Ring M B X P 0 P = 0 P
58 57 adantr N Fin R Ring M B i N X P 0 P = 0 P
59 58 ad2antrr N Fin R Ring M B i N j N i j X P 0 P = 0 P
60 53 59 eqtrd N Fin R Ring M B i N j N i j X P i 1 ˙ j = 0 P
61 60 adantr N Fin R Ring M B i N j N i j i M j = 0 ˙ X P i 1 ˙ j = 0 P
62 simpll N Fin R Ring M B i N j N N Fin R Ring M B
63 62 24 jca N Fin R Ring M B i N j N N Fin R Ring M B i N j N
64 63 ad2antrr N Fin R Ring M B i N j N i j i M j = 0 ˙ N Fin R Ring M B i N j N
65 14 3 5 2 4 mat2pmatvalel N Fin R Ring M B i N j N i T M j = S i M j
66 64 65 syl N Fin R Ring M B i N j N i j i M j = 0 ˙ i T M j = S i M j
67 61 66 oveq12d N Fin R Ring M B i N j N i j i M j = 0 ˙ X P i 1 ˙ j - ˙ i T M j = 0 P - ˙ S i M j
68 fveq2 i M j = 0 ˙ S i M j = S 0 ˙
69 68 adantl N Fin R Ring M B i N j N i j i M j = 0 ˙ S i M j = S 0 ˙
70 2 4 7 46 ply1scl0 R Ring S 0 ˙ = 0 P
71 70 3ad2ant2 N Fin R Ring M B S 0 ˙ = 0 P
72 71 ad4antr N Fin R Ring M B i N j N i j i M j = 0 ˙ S 0 ˙ = 0 P
73 69 72 eqtrd N Fin R Ring M B i N j N i j i M j = 0 ˙ S i M j = 0 P
74 73 oveq2d N Fin R Ring M B i N j N i j i M j = 0 ˙ 0 P - ˙ S i M j = 0 P - ˙ 0 P
75 ringgrp P Ring P Grp
76 15 75 syl R Ring P Grp
77 30 46 grpidcl P Grp 0 P Base P
78 76 77 jccir R Ring P Grp 0 P Base P
79 78 3ad2ant2 N Fin R Ring M B P Grp 0 P Base P
80 30 46 9 grpsubid P Grp 0 P Base P 0 P - ˙ 0 P = 0 P
81 79 80 syl N Fin R Ring M B 0 P - ˙ 0 P = 0 P
82 81 ad4antr N Fin R Ring M B i N j N i j i M j = 0 ˙ 0 P - ˙ 0 P = 0 P
83 67 74 82 3eqtrd N Fin R Ring M B i N j N i j i M j = 0 ˙ X P i 1 ˙ j - ˙ i T M j = 0 P
84 28 44 83 3eqtrd N Fin R Ring M B i N j N i j i M j = 0 ˙ i X · ˙ 1 ˙ Z T M j = 0 P