Step |
Hyp |
Ref |
Expression |
1 |
|
chpdmat.c |
|
2 |
|
chpdmat.p |
|
3 |
|
chpdmat.a |
|
4 |
|
chpdmat.s |
|
5 |
|
chpdmat.b |
|
6 |
|
chpdmat.x |
|
7 |
|
chpdmat.0 |
|
8 |
|
chpdmat.g |
|
9 |
|
chpdmat.m |
|
10 |
|
chpdmatlem.q |
|
11 |
|
chpdmatlem.1 |
|
12 |
|
chpdmatlem.m |
|
13 |
|
chpdmatlem.z |
|
14 |
|
chpdmatlem.t |
|
15 |
2
|
ply1ring |
|
16 |
15
|
3ad2ant2 |
|
17 |
16
|
ad4antr |
|
18 |
1 2 3 4 5 6 7 8 9 10 11 12
|
chpdmatlem0 |
|
19 |
18
|
3adant3 |
|
20 |
19
|
ad4antr |
|
21 |
14 3 5 2 10
|
mat2pmatbas |
|
22 |
21
|
ad4antr |
|
23 |
|
simpr |
|
24 |
23
|
anim1i |
|
25 |
24
|
ad2antrr |
|
26 |
|
eqid |
|
27 |
10 26 13 9
|
matsubgcell |
|
28 |
17 20 22 25 27
|
syl121anc |
|
29 |
16
|
ad2antrr |
|
30 |
|
eqid |
|
31 |
6 2 30
|
vr1cl |
|
32 |
31
|
3ad2ant2 |
|
33 |
2 10
|
pmatring |
|
34 |
33
|
3adant3 |
|
35 |
26 11
|
ringidcl |
|
36 |
34 35
|
syl |
|
37 |
32 36
|
jca |
|
38 |
37
|
ad2antrr |
|
39 |
29 38 24
|
3jca |
|
40 |
39
|
ad2antrr |
|
41 |
|
eqid |
|
42 |
10 26 30 12 41
|
matvscacell |
|
43 |
40 42
|
syl |
|
44 |
43
|
oveq1d |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
|
simpll1 |
|
48 |
23
|
adantr |
|
49 |
|
simpr |
|
50 |
10 45 46 47 29 48 49 11
|
mat1ov |
|
51 |
|
ifnefalse |
|
52 |
50 51
|
sylan9eq |
|
53 |
52
|
oveq2d |
|
54 |
15 31
|
jca |
|
55 |
54
|
3ad2ant2 |
|
56 |
30 41 46
|
ringrz |
|
57 |
55 56
|
syl |
|
58 |
57
|
adantr |
|
59 |
58
|
ad2antrr |
|
60 |
53 59
|
eqtrd |
|
61 |
60
|
adantr |
|
62 |
|
simpll |
|
63 |
62 24
|
jca |
|
64 |
63
|
ad2antrr |
|
65 |
14 3 5 2 4
|
mat2pmatvalel |
|
66 |
64 65
|
syl |
|
67 |
61 66
|
oveq12d |
|
68 |
|
fveq2 |
|
69 |
68
|
adantl |
|
70 |
2 4 7 46
|
ply1scl0 |
|
71 |
70
|
3ad2ant2 |
|
72 |
71
|
ad4antr |
|
73 |
69 72
|
eqtrd |
|
74 |
73
|
oveq2d |
|
75 |
|
ringgrp |
|
76 |
15 75
|
syl |
|
77 |
30 46
|
grpidcl |
|
78 |
76 77
|
jccir |
|
79 |
78
|
3ad2ant2 |
|
80 |
30 46 9
|
grpsubid |
|
81 |
79 80
|
syl |
|
82 |
81
|
ad4antr |
|
83 |
67 74 82
|
3eqtrd |
|
84 |
28 44 83
|
3eqtrd |
|