| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpdmat.c |
|
| 2 |
|
chpdmat.p |
|
| 3 |
|
chpdmat.a |
|
| 4 |
|
chpdmat.s |
|
| 5 |
|
chpdmat.b |
|
| 6 |
|
chpdmat.x |
|
| 7 |
|
chpdmat.0 |
|
| 8 |
|
chpdmat.g |
|
| 9 |
|
chpdmat.m |
|
| 10 |
|
chpdmatlem.q |
|
| 11 |
|
chpdmatlem.1 |
|
| 12 |
|
chpdmatlem.m |
|
| 13 |
|
chpdmatlem.z |
|
| 14 |
|
chpdmatlem.t |
|
| 15 |
2
|
ply1ring |
|
| 16 |
15
|
3ad2ant2 |
|
| 17 |
16
|
ad4antr |
|
| 18 |
1 2 3 4 5 6 7 8 9 10 11 12
|
chpdmatlem0 |
|
| 19 |
18
|
3adant3 |
|
| 20 |
19
|
ad4antr |
|
| 21 |
14 3 5 2 10
|
mat2pmatbas |
|
| 22 |
21
|
ad4antr |
|
| 23 |
|
simpr |
|
| 24 |
23
|
anim1i |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
|
eqid |
|
| 27 |
10 26 13 9
|
matsubgcell |
|
| 28 |
17 20 22 25 27
|
syl121anc |
|
| 29 |
16
|
ad2antrr |
|
| 30 |
|
eqid |
|
| 31 |
6 2 30
|
vr1cl |
|
| 32 |
31
|
3ad2ant2 |
|
| 33 |
2 10
|
pmatring |
|
| 34 |
33
|
3adant3 |
|
| 35 |
26 11
|
ringidcl |
|
| 36 |
34 35
|
syl |
|
| 37 |
32 36
|
jca |
|
| 38 |
37
|
ad2antrr |
|
| 39 |
29 38 24
|
3jca |
|
| 40 |
39
|
ad2antrr |
|
| 41 |
|
eqid |
|
| 42 |
10 26 30 12 41
|
matvscacell |
|
| 43 |
40 42
|
syl |
|
| 44 |
43
|
oveq1d |
|
| 45 |
|
eqid |
|
| 46 |
|
eqid |
|
| 47 |
|
simpll1 |
|
| 48 |
23
|
adantr |
|
| 49 |
|
simpr |
|
| 50 |
10 45 46 47 29 48 49 11
|
mat1ov |
|
| 51 |
|
ifnefalse |
|
| 52 |
50 51
|
sylan9eq |
|
| 53 |
52
|
oveq2d |
|
| 54 |
15 31
|
jca |
|
| 55 |
54
|
3ad2ant2 |
|
| 56 |
30 41 46
|
ringrz |
|
| 57 |
55 56
|
syl |
|
| 58 |
57
|
adantr |
|
| 59 |
58
|
ad2antrr |
|
| 60 |
53 59
|
eqtrd |
|
| 61 |
60
|
adantr |
|
| 62 |
|
simpll |
|
| 63 |
62 24
|
jca |
|
| 64 |
63
|
ad2antrr |
|
| 65 |
14 3 5 2 4
|
mat2pmatvalel |
|
| 66 |
64 65
|
syl |
|
| 67 |
61 66
|
oveq12d |
|
| 68 |
|
fveq2 |
|
| 69 |
68
|
adantl |
|
| 70 |
2 4 7 46
|
ply1scl0 |
|
| 71 |
70
|
3ad2ant2 |
|
| 72 |
71
|
ad4antr |
|
| 73 |
69 72
|
eqtrd |
|
| 74 |
73
|
oveq2d |
|
| 75 |
|
ringgrp |
|
| 76 |
15 75
|
syl |
|
| 77 |
30 46
|
grpidcl |
|
| 78 |
76 77
|
jccir |
|
| 79 |
78
|
3ad2ant2 |
|
| 80 |
30 46 9
|
grpsubid |
|
| 81 |
79 80
|
syl |
|
| 82 |
81
|
ad4antr |
|
| 83 |
67 74 82
|
3eqtrd |
|
| 84 |
28 44 83
|
3eqtrd |
|