Step |
Hyp |
Ref |
Expression |
1 |
|
chpdmat.c |
|
2 |
|
chpdmat.p |
|
3 |
|
chpdmat.a |
|
4 |
|
chpdmat.s |
|
5 |
|
chpdmat.b |
|
6 |
|
chpdmat.x |
|
7 |
|
chpdmat.0 |
|
8 |
|
chpdmat.g |
|
9 |
|
chpdmat.m |
|
10 |
|
chpdmatlem.q |
|
11 |
|
chpdmatlem.1 |
|
12 |
|
chpdmatlem.m |
|
13 |
|
chpdmatlem.z |
|
14 |
|
chpdmatlem.t |
|
15 |
2
|
ply1ring |
|
16 |
15
|
3ad2ant2 |
|
17 |
16
|
adantr |
|
18 |
1 2 3 4 5 6 7 8 9 10 11 12
|
chpdmatlem0 |
|
19 |
18
|
3adant3 |
|
20 |
14 3 5 2 10
|
mat2pmatbas |
|
21 |
19 20
|
jca |
|
22 |
21
|
adantr |
|
23 |
|
simpr |
|
24 |
|
eqid |
|
25 |
10 24 13 9
|
matsubgcell |
|
26 |
17 22 23 23 25
|
syl112anc |
|
27 |
|
eqid |
|
28 |
6 2 27
|
vr1cl |
|
29 |
28
|
adantl |
|
30 |
2 10
|
pmatring |
|
31 |
24 11
|
ringidcl |
|
32 |
30 31
|
syl |
|
33 |
29 32
|
jca |
|
34 |
33
|
3adant3 |
|
35 |
34
|
adantr |
|
36 |
|
eqid |
|
37 |
10 24 27 12 36
|
matvscacell |
|
38 |
17 35 23 23 37
|
syl112anc |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
|
simpl1 |
|
42 |
10 39 40 41 17 23 23 11
|
mat1ov |
|
43 |
|
eqid |
|
44 |
43
|
iftruei |
|
45 |
42 44
|
eqtrdi |
|
46 |
45
|
oveq2d |
|
47 |
15 28
|
jca |
|
48 |
47
|
3ad2ant2 |
|
49 |
27 36 39
|
ringridm |
|
50 |
48 49
|
syl |
|
51 |
50
|
adantr |
|
52 |
38 46 51
|
3eqtrd |
|
53 |
14 3 5 2 4
|
mat2pmatvalel |
|
54 |
53
|
anabsan2 |
|
55 |
52 54
|
oveq12d |
|
56 |
26 55
|
eqtrd |
|