Metamath Proof Explorer


Theorem chpdmatlem3

Description: Lemma 3 for chpdmat . (Contributed by AV, 18-Aug-2019)

Ref Expression
Hypotheses chpdmat.c C = N CharPlyMat R
chpdmat.p P = Poly 1 R
chpdmat.a A = N Mat R
chpdmat.s S = algSc P
chpdmat.b B = Base A
chpdmat.x X = var 1 R
chpdmat.0 0 ˙ = 0 R
chpdmat.g G = mulGrp P
chpdmat.m - ˙ = - P
chpdmatlem.q Q = N Mat P
chpdmatlem.1 1 ˙ = 1 Q
chpdmatlem.m · ˙ = Q
chpdmatlem.z Z = - Q
chpdmatlem.t T = N matToPolyMat R
Assertion chpdmatlem3 N Fin R Ring M B K N K X · ˙ 1 ˙ Z T M K = X - ˙ S K M K

Proof

Step Hyp Ref Expression
1 chpdmat.c C = N CharPlyMat R
2 chpdmat.p P = Poly 1 R
3 chpdmat.a A = N Mat R
4 chpdmat.s S = algSc P
5 chpdmat.b B = Base A
6 chpdmat.x X = var 1 R
7 chpdmat.0 0 ˙ = 0 R
8 chpdmat.g G = mulGrp P
9 chpdmat.m - ˙ = - P
10 chpdmatlem.q Q = N Mat P
11 chpdmatlem.1 1 ˙ = 1 Q
12 chpdmatlem.m · ˙ = Q
13 chpdmatlem.z Z = - Q
14 chpdmatlem.t T = N matToPolyMat R
15 2 ply1ring R Ring P Ring
16 15 3ad2ant2 N Fin R Ring M B P Ring
17 16 adantr N Fin R Ring M B K N P Ring
18 1 2 3 4 5 6 7 8 9 10 11 12 chpdmatlem0 N Fin R Ring X · ˙ 1 ˙ Base Q
19 18 3adant3 N Fin R Ring M B X · ˙ 1 ˙ Base Q
20 14 3 5 2 10 mat2pmatbas N Fin R Ring M B T M Base Q
21 19 20 jca N Fin R Ring M B X · ˙ 1 ˙ Base Q T M Base Q
22 21 adantr N Fin R Ring M B K N X · ˙ 1 ˙ Base Q T M Base Q
23 simpr N Fin R Ring M B K N K N
24 eqid Base Q = Base Q
25 10 24 13 9 matsubgcell P Ring X · ˙ 1 ˙ Base Q T M Base Q K N K N K X · ˙ 1 ˙ Z T M K = K X · ˙ 1 ˙ K - ˙ K T M K
26 17 22 23 23 25 syl112anc N Fin R Ring M B K N K X · ˙ 1 ˙ Z T M K = K X · ˙ 1 ˙ K - ˙ K T M K
27 eqid Base P = Base P
28 6 2 27 vr1cl R Ring X Base P
29 28 adantl N Fin R Ring X Base P
30 2 10 pmatring N Fin R Ring Q Ring
31 24 11 ringidcl Q Ring 1 ˙ Base Q
32 30 31 syl N Fin R Ring 1 ˙ Base Q
33 29 32 jca N Fin R Ring X Base P 1 ˙ Base Q
34 33 3adant3 N Fin R Ring M B X Base P 1 ˙ Base Q
35 34 adantr N Fin R Ring M B K N X Base P 1 ˙ Base Q
36 eqid P = P
37 10 24 27 12 36 matvscacell P Ring X Base P 1 ˙ Base Q K N K N K X · ˙ 1 ˙ K = X P K 1 ˙ K
38 17 35 23 23 37 syl112anc N Fin R Ring M B K N K X · ˙ 1 ˙ K = X P K 1 ˙ K
39 eqid 1 P = 1 P
40 eqid 0 P = 0 P
41 simpl1 N Fin R Ring M B K N N Fin
42 10 39 40 41 17 23 23 11 mat1ov N Fin R Ring M B K N K 1 ˙ K = if K = K 1 P 0 P
43 eqid K = K
44 43 iftruei if K = K 1 P 0 P = 1 P
45 42 44 eqtrdi N Fin R Ring M B K N K 1 ˙ K = 1 P
46 45 oveq2d N Fin R Ring M B K N X P K 1 ˙ K = X P 1 P
47 15 28 jca R Ring P Ring X Base P
48 47 3ad2ant2 N Fin R Ring M B P Ring X Base P
49 27 36 39 ringridm P Ring X Base P X P 1 P = X
50 48 49 syl N Fin R Ring M B X P 1 P = X
51 50 adantr N Fin R Ring M B K N X P 1 P = X
52 38 46 51 3eqtrd N Fin R Ring M B K N K X · ˙ 1 ˙ K = X
53 14 3 5 2 4 mat2pmatvalel N Fin R Ring M B K N K N K T M K = S K M K
54 53 anabsan2 N Fin R Ring M B K N K T M K = S K M K
55 52 54 oveq12d N Fin R Ring M B K N K X · ˙ 1 ˙ K - ˙ K T M K = X - ˙ S K M K
56 26 55 eqtrd N Fin R Ring M B K N K X · ˙ 1 ˙ Z T M K = X - ˙ S K M K