Metamath Proof Explorer


Theorem chpeq0

Description: The second Chebyshev function is zero iff its argument is less than 2 . (Contributed by Mario Carneiro, 9-Apr-2016)

Ref Expression
Assertion chpeq0 A ψ A = 0 A < 2

Proof

Step Hyp Ref Expression
1 2re 2
2 lenlt 2 A 2 A ¬ A < 2
3 1 2 mpan A 2 A ¬ A < 2
4 chprpcl A 2 A ψ A +
5 4 rpne0d A 2 A ψ A 0
6 5 ex A 2 A ψ A 0
7 3 6 sylbird A ¬ A < 2 ψ A 0
8 7 necon4bd A ψ A = 0 A < 2
9 reflcl A A
10 9 adantr A A < 2 A
11 1red A A < 2 1
12 2z 2
13 fllt A 2 A < 2 A < 2
14 12 13 mpan2 A A < 2 A < 2
15 14 biimpa A A < 2 A < 2
16 df-2 2 = 1 + 1
17 15 16 breqtrdi A A < 2 A < 1 + 1
18 flcl A A
19 18 adantr A A < 2 A
20 1z 1
21 zleltp1 A 1 A 1 A < 1 + 1
22 19 20 21 sylancl A A < 2 A 1 A < 1 + 1
23 17 22 mpbird A A < 2 A 1
24 chpwordi A 1 A 1 ψ A ψ 1
25 10 11 23 24 syl3anc A A < 2 ψ A ψ 1
26 chpfl A ψ A = ψ A
27 26 adantr A A < 2 ψ A = ψ A
28 chp1 ψ 1 = 0
29 28 a1i A A < 2 ψ 1 = 0
30 25 27 29 3brtr3d A A < 2 ψ A 0
31 chpge0 A 0 ψ A
32 31 adantr A A < 2 0 ψ A
33 chpcl A ψ A
34 33 adantr A A < 2 ψ A
35 0re 0
36 letri3 ψ A 0 ψ A = 0 ψ A 0 0 ψ A
37 34 35 36 sylancl A A < 2 ψ A = 0 ψ A 0 0 ψ A
38 30 32 37 mpbir2and A A < 2 ψ A = 0
39 38 ex A A < 2 ψ A = 0
40 8 39 impbid A ψ A = 0 A < 2