Metamath Proof Explorer


Theorem chpf

Description: Functionality of the second Chebyshev function. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion chpf ψ :

Proof

Step Hyp Ref Expression
1 df-chp ψ = x n = 1 x Λ n
2 fzfid x 1 x Fin
3 elfznn n 1 x n
4 3 adantl x n 1 x n
5 vmacl n Λ n
6 4 5 syl x n 1 x Λ n
7 2 6 fsumrecl x n = 1 x Λ n
8 1 7 fmpti ψ :