Step |
Hyp |
Ref |
Expression |
1 |
|
chp0mat.c |
|
2 |
|
chp0mat.p |
|
3 |
|
chp0mat.a |
|
4 |
|
chp0mat.x |
|
5 |
|
chp0mat.g |
|
6 |
|
chp0mat.m |
|
7 |
|
chpidmat.i |
|
8 |
|
chpidmat.s |
|
9 |
|
chpidmat.1 |
|
10 |
|
chpidmat.m |
|
11 |
|
simpl |
|
12 |
|
simpr |
|
13 |
|
crngring |
|
14 |
3
|
matring |
|
15 |
13 14
|
sylan2 |
|
16 |
|
eqid |
|
17 |
16 7
|
ringidcl |
|
18 |
15 17
|
syl |
|
19 |
|
eqid |
|
20 |
11
|
ad2antrr |
|
21 |
13
|
adantl |
|
22 |
21
|
ad2antrr |
|
23 |
|
simplrl |
|
24 |
|
simplrr |
|
25 |
3 9 19 20 22 23 24 7
|
mat1ov |
|
26 |
|
ifnefalse |
|
27 |
26
|
adantl |
|
28 |
25 27
|
eqtrd |
|
29 |
28
|
ex |
|
30 |
29
|
ralrimivva |
|
31 |
|
eqid |
|
32 |
1 2 3 8 16 4 19 5 31
|
chpdmat |
|
33 |
11 12 18 30 32
|
syl31anc |
|
34 |
11
|
adantr |
|
35 |
21
|
adantr |
|
36 |
|
simpr |
|
37 |
3 9 19 34 35 36 36 7
|
mat1ov |
|
38 |
|
eqid |
|
39 |
38
|
iftruei |
|
40 |
37 39
|
eqtrdi |
|
41 |
40
|
fveq2d |
|
42 |
41
|
oveq2d |
|
43 |
42
|
mpteq2dva |
|
44 |
43
|
oveq2d |
|
45 |
2
|
ply1crng |
|
46 |
5
|
crngmgp |
|
47 |
|
cmnmnd |
|
48 |
45 46 47
|
3syl |
|
49 |
48
|
adantl |
|
50 |
2
|
ply1ring |
|
51 |
|
ringgrp |
|
52 |
50 51
|
syl |
|
53 |
|
eqid |
|
54 |
4 2 53
|
vr1cl |
|
55 |
|
eqid |
|
56 |
2 8 9 55
|
ply1scl1 |
|
57 |
53 55
|
ringidcl |
|
58 |
50 57
|
syl |
|
59 |
56 58
|
eqeltrd |
|
60 |
52 54 59
|
3jca |
|
61 |
13 60
|
syl |
|
62 |
61
|
adantl |
|
63 |
53 31
|
grpsubcl |
|
64 |
62 63
|
syl |
|
65 |
5 53
|
mgpbas |
|
66 |
64 65
|
eleqtrdi |
|
67 |
|
eqid |
|
68 |
67 6
|
gsumconst |
|
69 |
10
|
eqcomi |
|
70 |
69
|
oveqi |
|
71 |
70
|
oveq2i |
|
72 |
68 71
|
eqtrdi |
|
73 |
49 11 66 72
|
syl3anc |
|
74 |
44 73
|
eqtrd |
|
75 |
33 74
|
eqtrd |
|