Metamath Proof Explorer


Theorem chpmat0d

Description: The characteristic polynomial of the empty matrix. (Contributed by AV, 6-Aug-2019)

Ref Expression
Hypothesis chpmat0.c C = CharPlyMat R
Assertion chpmat0d R Ring C = 1 Poly 1 R

Proof

Step Hyp Ref Expression
1 chpmat0.c C = CharPlyMat R
2 0fin Fin
3 id R Ring R Ring
4 0ex V
5 4 snid
6 mat0dimbas0 R Ring Base Mat R =
7 5 6 eleqtrrid R Ring Base Mat R
8 eqid Mat R = Mat R
9 eqid Base Mat R = Base Mat R
10 eqid Poly 1 R = Poly 1 R
11 eqid Mat Poly 1 R = Mat Poly 1 R
12 eqid maDet Poly 1 R = maDet Poly 1 R
13 eqid - Mat Poly 1 R = - Mat Poly 1 R
14 eqid var 1 R = var 1 R
15 eqid Mat Poly 1 R = Mat Poly 1 R
16 eqid matToPolyMat R = matToPolyMat R
17 eqid 1 Mat Poly 1 R = 1 Mat Poly 1 R
18 1 8 9 10 11 12 13 14 15 16 17 chpmatval Fin R Ring Base Mat R C = maDet Poly 1 R var 1 R Mat Poly 1 R 1 Mat Poly 1 R - Mat Poly 1 R matToPolyMat R
19 2 3 7 18 mp3an2i R Ring C = maDet Poly 1 R var 1 R Mat Poly 1 R 1 Mat Poly 1 R - Mat Poly 1 R matToPolyMat R
20 10 ply1ring R Ring Poly 1 R Ring
21 mdet0pr Poly 1 R Ring maDet Poly 1 R = 1 Poly 1 R
22 21 fveq1d Poly 1 R Ring maDet Poly 1 R var 1 R Mat Poly 1 R 1 Mat Poly 1 R - Mat Poly 1 R matToPolyMat R = 1 Poly 1 R var 1 R Mat Poly 1 R 1 Mat Poly 1 R - Mat Poly 1 R matToPolyMat R
23 20 22 syl R Ring maDet Poly 1 R var 1 R Mat Poly 1 R 1 Mat Poly 1 R - Mat Poly 1 R matToPolyMat R = 1 Poly 1 R var 1 R Mat Poly 1 R 1 Mat Poly 1 R - Mat Poly 1 R matToPolyMat R
24 11 mat0dimid Poly 1 R Ring 1 Mat Poly 1 R =
25 20 24 syl R Ring 1 Mat Poly 1 R =
26 25 oveq2d R Ring var 1 R Mat Poly 1 R 1 Mat Poly 1 R = var 1 R Mat Poly 1 R
27 eqid Base Poly 1 R = Base Poly 1 R
28 14 10 27 vr1cl R Ring var 1 R Base Poly 1 R
29 11 mat0dimscm Poly 1 R Ring var 1 R Base Poly 1 R var 1 R Mat Poly 1 R =
30 20 28 29 syl2anc R Ring var 1 R Mat Poly 1 R =
31 26 30 eqtrd R Ring var 1 R Mat Poly 1 R 1 Mat Poly 1 R =
32 d0mat2pmat R Ring matToPolyMat R =
33 31 32 oveq12d R Ring var 1 R Mat Poly 1 R 1 Mat Poly 1 R - Mat Poly 1 R matToPolyMat R = - Mat Poly 1 R
34 11 matring Fin Poly 1 R Ring Mat Poly 1 R Ring
35 2 20 34 sylancr R Ring Mat Poly 1 R Ring
36 ringgrp Mat Poly 1 R Ring Mat Poly 1 R Grp
37 35 36 syl R Ring Mat Poly 1 R Grp
38 mat0dimbas0 Poly 1 R Ring Base Mat Poly 1 R =
39 20 38 syl R Ring Base Mat Poly 1 R =
40 5 39 eleqtrrid R Ring Base Mat Poly 1 R
41 eqid Base Mat Poly 1 R = Base Mat Poly 1 R
42 eqid 0 Mat Poly 1 R = 0 Mat Poly 1 R
43 41 42 13 grpsubid Mat Poly 1 R Grp Base Mat Poly 1 R - Mat Poly 1 R = 0 Mat Poly 1 R
44 37 40 43 syl2anc R Ring - Mat Poly 1 R = 0 Mat Poly 1 R
45 33 44 eqtrd R Ring var 1 R Mat Poly 1 R 1 Mat Poly 1 R - Mat Poly 1 R matToPolyMat R = 0 Mat Poly 1 R
46 45 fveq2d R Ring 1 Poly 1 R var 1 R Mat Poly 1 R 1 Mat Poly 1 R - Mat Poly 1 R matToPolyMat R = 1 Poly 1 R 0 Mat Poly 1 R
47 11 mat0dim0 Poly 1 R Ring 0 Mat Poly 1 R =
48 20 47 syl R Ring 0 Mat Poly 1 R =
49 48 fveq2d R Ring 1 Poly 1 R 0 Mat Poly 1 R = 1 Poly 1 R
50 fvex 1 Poly 1 R V
51 4 50 fvsn 1 Poly 1 R = 1 Poly 1 R
52 49 51 eqtrdi R Ring 1 Poly 1 R 0 Mat Poly 1 R = 1 Poly 1 R
53 46 52 eqtrd R Ring 1 Poly 1 R var 1 R Mat Poly 1 R 1 Mat Poly 1 R - Mat Poly 1 R matToPolyMat R = 1 Poly 1 R
54 23 53 eqtrd R Ring maDet Poly 1 R var 1 R Mat Poly 1 R 1 Mat Poly 1 R - Mat Poly 1 R matToPolyMat R = 1 Poly 1 R
55 19 54 eqtrd R Ring C = 1 Poly 1 R