Step |
Hyp |
Ref |
Expression |
1 |
|
chpmat0.c |
|
2 |
|
0fin |
|
3 |
|
id |
|
4 |
|
0ex |
|
5 |
4
|
snid |
|
6 |
|
mat0dimbas0 |
|
7 |
5 6
|
eleqtrrid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
1 8 9 10 11 12 13 14 15 16 17
|
chpmatval |
|
19 |
2 3 7 18
|
mp3an2i |
|
20 |
10
|
ply1ring |
|
21 |
|
mdet0pr |
|
22 |
21
|
fveq1d |
|
23 |
20 22
|
syl |
|
24 |
11
|
mat0dimid |
|
25 |
20 24
|
syl |
|
26 |
25
|
oveq2d |
|
27 |
|
eqid |
|
28 |
14 10 27
|
vr1cl |
|
29 |
11
|
mat0dimscm |
|
30 |
20 28 29
|
syl2anc |
|
31 |
26 30
|
eqtrd |
|
32 |
|
d0mat2pmat |
|
33 |
31 32
|
oveq12d |
|
34 |
11
|
matring |
|
35 |
2 20 34
|
sylancr |
|
36 |
|
ringgrp |
|
37 |
35 36
|
syl |
|
38 |
|
mat0dimbas0 |
|
39 |
20 38
|
syl |
|
40 |
5 39
|
eleqtrrid |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
41 42 13
|
grpsubid |
|
44 |
37 40 43
|
syl2anc |
|
45 |
33 44
|
eqtrd |
|
46 |
45
|
fveq2d |
|
47 |
11
|
mat0dim0 |
|
48 |
20 47
|
syl |
|
49 |
48
|
fveq2d |
|
50 |
|
fvex |
|
51 |
4 50
|
fvsn |
|
52 |
49 51
|
eqtrdi |
|
53 |
46 52
|
eqtrd |
|
54 |
23 53
|
eqtrd |
|
55 |
19 54
|
eqtrd |
|