Step |
Hyp |
Ref |
Expression |
1 |
|
chpmat1d.c |
|
2 |
|
chpmat1d.p |
|
3 |
|
chpmat1d.a |
|
4 |
|
chpmat1d.b |
|
5 |
|
chpmat1d.x |
|
6 |
|
chpmat1d.z |
|
7 |
|
chpmat1d.s |
|
8 |
|
snfi |
|
9 |
|
eleq1 |
|
10 |
8 9
|
mpbiri |
|
11 |
10
|
adantr |
|
12 |
11
|
3ad2ant2 |
|
13 |
|
simp1 |
|
14 |
|
simp3 |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
1 3 4 2 15 16 17 18 19 20 21
|
chpmatval |
|
23 |
12 13 14 22
|
syl3anc |
|
24 |
2
|
ply1crng |
|
25 |
24
|
3ad2ant1 |
|
26 |
|
simp2 |
|
27 |
|
crngring |
|
28 |
2
|
ply1ring |
|
29 |
27 28
|
syl |
|
30 |
29
|
3ad2ant1 |
|
31 |
15
|
matring |
|
32 |
12 30 31
|
syl2anc |
|
33 |
|
ringgrp |
|
34 |
32 33
|
syl |
|
35 |
15
|
matlmod |
|
36 |
12 30 35
|
syl2anc |
|
37 |
27
|
3ad2ant1 |
|
38 |
|
eqid |
|
39 |
|
eqid |
|
40 |
18 38 39
|
vr1cl |
|
41 |
37 40
|
syl |
|
42 |
38
|
ply1crng |
|
43 |
42
|
3ad2ant1 |
|
44 |
2
|
oveq2i |
|
45 |
44
|
matsca2 |
|
46 |
12 43 45
|
syl2anc |
|
47 |
46
|
eqcomd |
|
48 |
47
|
fveq2d |
|
49 |
41 48
|
eleqtrrd |
|
50 |
|
eqid |
|
51 |
50 21
|
ringidcl |
|
52 |
32 51
|
syl |
|
53 |
|
eqid |
|
54 |
|
eqid |
|
55 |
50 53 19 54
|
lmodvscl |
|
56 |
36 49 52 55
|
syl3anc |
|
57 |
20 3 4 2 15
|
mat2pmatbas |
|
58 |
12 37 14 57
|
syl3anc |
|
59 |
50 17
|
grpsubcl |
|
60 |
34 56 58 59
|
syl3anc |
|
61 |
16 15 50
|
m1detdiag |
|
62 |
25 26 60 61
|
syl3anc |
|
63 |
5
|
eqcomi |
|
64 |
63
|
a1i |
|
65 |
64
|
oveq1d |
|
66 |
65
|
oveq1d |
|
67 |
66
|
oveqd |
|
68 |
1 2 3 4 5 6 7 15 20
|
chpmat1dlem |
|
69 |
27 68
|
syl3an1 |
|
70 |
67 69
|
eqtrd |
|
71 |
62 70
|
eqtrd |
|
72 |
23 71
|
eqtrd |
|