Step |
Hyp |
Ref |
Expression |
1 |
|
chpmat1d.c |
|
2 |
|
chpmat1d.p |
|
3 |
|
chpmat1d.a |
|
4 |
|
chpmat1d.b |
|
5 |
|
chpmat1d.x |
|
6 |
|
chpmat1d.z |
|
7 |
|
chpmat1d.s |
|
8 |
|
chpmat1dlem.g |
|
9 |
|
chpmat1dlem.x |
|
10 |
2
|
ply1ring |
|
11 |
10
|
3ad2ant1 |
|
12 |
|
snfi |
|
13 |
|
eleq1 |
|
14 |
12 13
|
mpbiri |
|
15 |
14
|
adantr |
|
16 |
10 15
|
anim12i |
|
17 |
16
|
3adant3 |
|
18 |
17
|
ancomd |
|
19 |
8
|
matlmod |
|
20 |
18 19
|
syl |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
5 21 22
|
vr1cl |
|
24 |
23
|
3ad2ant1 |
|
25 |
15
|
3ad2ant2 |
|
26 |
|
fvex |
|
27 |
2
|
oveq2i |
|
28 |
8 27
|
eqtri |
|
29 |
28
|
matsca2 |
|
30 |
25 26 29
|
sylancl |
|
31 |
30
|
eqcomd |
|
32 |
31
|
fveq2d |
|
33 |
24 32
|
eleqtrrd |
|
34 |
8
|
matring |
|
35 |
18 34
|
syl |
|
36 |
|
eqid |
|
37 |
|
eqid |
|
38 |
36 37
|
ringidcl |
|
39 |
35 38
|
syl |
|
40 |
20 33 39
|
3jca |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
|
eqid |
|
44 |
36 41 42 43
|
lmodvscl |
|
45 |
40 44
|
syl |
|
46 |
|
simp1 |
|
47 |
|
simp3 |
|
48 |
25 46 47
|
3jca |
|
49 |
9 3 4 2 8
|
mat2pmatbas |
|
50 |
48 49
|
syl |
|
51 |
|
snidg |
|
52 |
51
|
adantl |
|
53 |
|
eleq2 |
|
54 |
53
|
adantr |
|
55 |
52 54
|
mpbird |
|
56 |
|
id |
|
57 |
55 56
|
jccir |
|
58 |
57
|
3ad2ant2 |
|
59 |
|
eqid |
|
60 |
8 36 59 6
|
matsubgcell |
|
61 |
11 45 50 58 60
|
syl121anc |
|
62 |
|
eqid |
|
63 |
5 2 62
|
vr1cl |
|
64 |
63
|
3ad2ant1 |
|
65 |
|
eqid |
|
66 |
8 36 62 42 65
|
matvscacell |
|
67 |
11 64 39 58 66
|
syl121anc |
|
68 |
|
eqid |
|
69 |
|
eqid |
|
70 |
55
|
3ad2ant2 |
|
71 |
8 68 69 25 11 70 70 37
|
mat1ov |
|
72 |
|
eqidd |
|
73 |
72
|
iftrued |
|
74 |
71 73
|
eqtrd |
|
75 |
74
|
oveq2d |
|
76 |
62 65 68
|
ringridm |
|
77 |
11 64 76
|
syl2anc |
|
78 |
67 75 77
|
3eqtrd |
|
79 |
9 3 4 2 7
|
mat2pmatvalel |
|
80 |
48 58 79
|
syl2anc |
|
81 |
78 80
|
oveq12d |
|
82 |
61 81
|
eqtrd |
|