| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpmat1d.c |
|
| 2 |
|
chpmat1d.p |
|
| 3 |
|
chpmat1d.a |
|
| 4 |
|
chpmat1d.b |
|
| 5 |
|
chpmat1d.x |
|
| 6 |
|
chpmat1d.z |
|
| 7 |
|
chpmat1d.s |
|
| 8 |
|
chpmat1dlem.g |
|
| 9 |
|
chpmat1dlem.x |
|
| 10 |
2
|
ply1ring |
|
| 11 |
10
|
3ad2ant1 |
|
| 12 |
|
snfi |
|
| 13 |
|
eleq1 |
|
| 14 |
12 13
|
mpbiri |
|
| 15 |
14
|
adantr |
|
| 16 |
10 15
|
anim12i |
|
| 17 |
16
|
3adant3 |
|
| 18 |
17
|
ancomd |
|
| 19 |
8
|
matlmod |
|
| 20 |
18 19
|
syl |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
5 21 22
|
vr1cl |
|
| 24 |
23
|
3ad2ant1 |
|
| 25 |
15
|
3ad2ant2 |
|
| 26 |
|
fvex |
|
| 27 |
2
|
oveq2i |
|
| 28 |
8 27
|
eqtri |
|
| 29 |
28
|
matsca2 |
|
| 30 |
25 26 29
|
sylancl |
|
| 31 |
30
|
eqcomd |
|
| 32 |
31
|
fveq2d |
|
| 33 |
24 32
|
eleqtrrd |
|
| 34 |
8
|
matring |
|
| 35 |
18 34
|
syl |
|
| 36 |
|
eqid |
|
| 37 |
|
eqid |
|
| 38 |
36 37
|
ringidcl |
|
| 39 |
35 38
|
syl |
|
| 40 |
20 33 39
|
3jca |
|
| 41 |
|
eqid |
|
| 42 |
|
eqid |
|
| 43 |
|
eqid |
|
| 44 |
36 41 42 43
|
lmodvscl |
|
| 45 |
40 44
|
syl |
|
| 46 |
|
simp1 |
|
| 47 |
|
simp3 |
|
| 48 |
25 46 47
|
3jca |
|
| 49 |
9 3 4 2 8
|
mat2pmatbas |
|
| 50 |
48 49
|
syl |
|
| 51 |
|
snidg |
|
| 52 |
51
|
adantl |
|
| 53 |
|
eleq2 |
|
| 54 |
53
|
adantr |
|
| 55 |
52 54
|
mpbird |
|
| 56 |
|
id |
|
| 57 |
55 56
|
jccir |
|
| 58 |
57
|
3ad2ant2 |
|
| 59 |
|
eqid |
|
| 60 |
8 36 59 6
|
matsubgcell |
|
| 61 |
11 45 50 58 60
|
syl121anc |
|
| 62 |
|
eqid |
|
| 63 |
5 2 62
|
vr1cl |
|
| 64 |
63
|
3ad2ant1 |
|
| 65 |
|
eqid |
|
| 66 |
8 36 62 42 65
|
matvscacell |
|
| 67 |
11 64 39 58 66
|
syl121anc |
|
| 68 |
|
eqid |
|
| 69 |
|
eqid |
|
| 70 |
55
|
3ad2ant2 |
|
| 71 |
8 68 69 25 11 70 70 37
|
mat1ov |
|
| 72 |
|
eqidd |
|
| 73 |
72
|
iftrued |
|
| 74 |
71 73
|
eqtrd |
|
| 75 |
74
|
oveq2d |
|
| 76 |
62 65 68
|
ringridm |
|
| 77 |
11 64 76
|
syl2anc |
|
| 78 |
67 75 77
|
3eqtrd |
|
| 79 |
9 3 4 2 7
|
mat2pmatvalel |
|
| 80 |
48 58 79
|
syl2anc |
|
| 81 |
78 80
|
oveq12d |
|
| 82 |
61 81
|
eqtrd |
|