Metamath Proof Explorer


Theorem chpmat1dlem

Description: Lemma for chpmat1d . (Contributed by AV, 7-Aug-2019)

Ref Expression
Hypotheses chpmat1d.c C = N CharPlyMat R
chpmat1d.p P = Poly 1 R
chpmat1d.a A = N Mat R
chpmat1d.b B = Base A
chpmat1d.x X = var 1 R
chpmat1d.z - ˙ = - P
chpmat1d.s S = algSc P
chpmat1dlem.g G = N Mat P
chpmat1dlem.x T = N matToPolyMat R
Assertion chpmat1dlem R Ring N = I I V M B I X G 1 G - G T M I = X - ˙ S I M I

Proof

Step Hyp Ref Expression
1 chpmat1d.c C = N CharPlyMat R
2 chpmat1d.p P = Poly 1 R
3 chpmat1d.a A = N Mat R
4 chpmat1d.b B = Base A
5 chpmat1d.x X = var 1 R
6 chpmat1d.z - ˙ = - P
7 chpmat1d.s S = algSc P
8 chpmat1dlem.g G = N Mat P
9 chpmat1dlem.x T = N matToPolyMat R
10 2 ply1ring R Ring P Ring
11 10 3ad2ant1 R Ring N = I I V M B P Ring
12 snfi I Fin
13 eleq1 N = I N Fin I Fin
14 12 13 mpbiri N = I N Fin
15 14 adantr N = I I V N Fin
16 10 15 anim12i R Ring N = I I V P Ring N Fin
17 16 3adant3 R Ring N = I I V M B P Ring N Fin
18 17 ancomd R Ring N = I I V M B N Fin P Ring
19 8 matlmod N Fin P Ring G LMod
20 18 19 syl R Ring N = I I V M B G LMod
21 eqid Poly 1 R = Poly 1 R
22 eqid Base Poly 1 R = Base Poly 1 R
23 5 21 22 vr1cl R Ring X Base Poly 1 R
24 23 3ad2ant1 R Ring N = I I V M B X Base Poly 1 R
25 15 3ad2ant2 R Ring N = I I V M B N Fin
26 fvex Poly 1 R V
27 2 oveq2i N Mat P = N Mat Poly 1 R
28 8 27 eqtri G = N Mat Poly 1 R
29 28 matsca2 N Fin Poly 1 R V Poly 1 R = Scalar G
30 25 26 29 sylancl R Ring N = I I V M B Poly 1 R = Scalar G
31 30 eqcomd R Ring N = I I V M B Scalar G = Poly 1 R
32 31 fveq2d R Ring N = I I V M B Base Scalar G = Base Poly 1 R
33 24 32 eleqtrrd R Ring N = I I V M B X Base Scalar G
34 8 matring N Fin P Ring G Ring
35 18 34 syl R Ring N = I I V M B G Ring
36 eqid Base G = Base G
37 eqid 1 G = 1 G
38 36 37 ringidcl G Ring 1 G Base G
39 35 38 syl R Ring N = I I V M B 1 G Base G
40 20 33 39 3jca R Ring N = I I V M B G LMod X Base Scalar G 1 G Base G
41 eqid Scalar G = Scalar G
42 eqid G = G
43 eqid Base Scalar G = Base Scalar G
44 36 41 42 43 lmodvscl G LMod X Base Scalar G 1 G Base G X G 1 G Base G
45 40 44 syl R Ring N = I I V M B X G 1 G Base G
46 simp1 R Ring N = I I V M B R Ring
47 simp3 R Ring N = I I V M B M B
48 25 46 47 3jca R Ring N = I I V M B N Fin R Ring M B
49 9 3 4 2 8 mat2pmatbas N Fin R Ring M B T M Base G
50 48 49 syl R Ring N = I I V M B T M Base G
51 snidg I V I I
52 51 adantl N = I I V I I
53 eleq2 N = I I N I I
54 53 adantr N = I I V I N I I
55 52 54 mpbird N = I I V I N
56 id I N I N
57 55 56 jccir N = I I V I N I N
58 57 3ad2ant2 R Ring N = I I V M B I N I N
59 eqid - G = - G
60 8 36 59 6 matsubgcell P Ring X G 1 G Base G T M Base G I N I N I X G 1 G - G T M I = I X G 1 G I - ˙ I T M I
61 11 45 50 58 60 syl121anc R Ring N = I I V M B I X G 1 G - G T M I = I X G 1 G I - ˙ I T M I
62 eqid Base P = Base P
63 5 2 62 vr1cl R Ring X Base P
64 63 3ad2ant1 R Ring N = I I V M B X Base P
65 eqid P = P
66 8 36 62 42 65 matvscacell P Ring X Base P 1 G Base G I N I N I X G 1 G I = X P I 1 G I
67 11 64 39 58 66 syl121anc R Ring N = I I V M B I X G 1 G I = X P I 1 G I
68 eqid 1 P = 1 P
69 eqid 0 P = 0 P
70 55 3ad2ant2 R Ring N = I I V M B I N
71 8 68 69 25 11 70 70 37 mat1ov R Ring N = I I V M B I 1 G I = if I = I 1 P 0 P
72 eqidd R Ring N = I I V M B I = I
73 72 iftrued R Ring N = I I V M B if I = I 1 P 0 P = 1 P
74 71 73 eqtrd R Ring N = I I V M B I 1 G I = 1 P
75 74 oveq2d R Ring N = I I V M B X P I 1 G I = X P 1 P
76 62 65 68 ringridm P Ring X Base P X P 1 P = X
77 11 64 76 syl2anc R Ring N = I I V M B X P 1 P = X
78 67 75 77 3eqtrd R Ring N = I I V M B I X G 1 G I = X
79 9 3 4 2 7 mat2pmatvalel N Fin R Ring M B I N I N I T M I = S I M I
80 48 58 79 syl2anc R Ring N = I I V M B I T M I = S I M I
81 78 80 oveq12d R Ring N = I I V M B I X G 1 G I - ˙ I T M I = X - ˙ S I M I
82 61 81 eqtrd R Ring N = I I V M B I X G 1 G - G T M I = X - ˙ S I M I