Metamath Proof Explorer


Theorem chpmatply1

Description: The characteristic polynomial of a (square) matrix over a commutative ring is a polynomial, see also the following remark in Lang, p. 561: "[the characteristic polynomial] is an element of k[t". (Contributed by AV, 2-Aug-2019) (Proof shortened by AV, 29-Nov-2019)

Ref Expression
Hypotheses chpmatply1.c C = N CharPlyMat R
chpmatply1.a A = N Mat R
chpmatply1.b B = Base A
chpmatply1.p P = Poly 1 R
chpmatply1.e E = Base P
Assertion chpmatply1 N Fin R CRing M B C M E

Proof

Step Hyp Ref Expression
1 chpmatply1.c C = N CharPlyMat R
2 chpmatply1.a A = N Mat R
3 chpmatply1.b B = Base A
4 chpmatply1.p P = Poly 1 R
5 chpmatply1.e E = Base P
6 eqid N Mat P = N Mat P
7 eqid N maDet P = N maDet P
8 eqid - N Mat P = - N Mat P
9 eqid var 1 R = var 1 R
10 eqid N Mat P = N Mat P
11 eqid N matToPolyMat R = N matToPolyMat R
12 eqid 1 N Mat P = 1 N Mat P
13 1 2 3 4 6 7 8 9 10 11 12 chpmatval N Fin R CRing M B C M = N maDet P var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M
14 4 ply1crng R CRing P CRing
15 14 3ad2ant2 N Fin R CRing M B P CRing
16 crngring R CRing R Ring
17 eqid var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M = var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M
18 2 3 4 6 9 11 8 10 12 17 chmatcl N Fin R Ring M B var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M Base N Mat P
19 16 18 syl3an2 N Fin R CRing M B var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M Base N Mat P
20 eqid Base N Mat P = Base N Mat P
21 7 6 20 5 mdetcl P CRing var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M Base N Mat P N maDet P var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M E
22 15 19 21 syl2anc N Fin R CRing M B N maDet P var 1 R N Mat P 1 N Mat P - N Mat P N matToPolyMat R M E
23 13 22 eqeltrd N Fin R CRing M B C M E