Metamath Proof Explorer


Theorem chpmatval

Description: The characteristic polynomial of a (square) matrix (expressed with a determinant). (Contributed by AV, 2-Aug-2019)

Ref Expression
Hypotheses chpmatfval.c C = N CharPlyMat R
chpmatfval.a A = N Mat R
chpmatfval.b B = Base A
chpmatfval.p P = Poly 1 R
chpmatfval.y Y = N Mat P
chpmatfval.d D = N maDet P
chpmatfval.s - ˙ = - Y
chpmatfval.x X = var 1 R
chpmatfval.m · ˙ = Y
chpmatfval.t T = N matToPolyMat R
chpmatfval.i 1 ˙ = 1 Y
Assertion chpmatval N Fin R V M B C M = D X · ˙ 1 ˙ - ˙ T M

Proof

Step Hyp Ref Expression
1 chpmatfval.c C = N CharPlyMat R
2 chpmatfval.a A = N Mat R
3 chpmatfval.b B = Base A
4 chpmatfval.p P = Poly 1 R
5 chpmatfval.y Y = N Mat P
6 chpmatfval.d D = N maDet P
7 chpmatfval.s - ˙ = - Y
8 chpmatfval.x X = var 1 R
9 chpmatfval.m · ˙ = Y
10 chpmatfval.t T = N matToPolyMat R
11 chpmatfval.i 1 ˙ = 1 Y
12 1 2 3 4 5 6 7 8 9 10 11 chpmatfval N Fin R V C = m B D X · ˙ 1 ˙ - ˙ T m
13 12 3adant3 N Fin R V M B C = m B D X · ˙ 1 ˙ - ˙ T m
14 fveq2 m = M T m = T M
15 14 oveq2d m = M X · ˙ 1 ˙ - ˙ T m = X · ˙ 1 ˙ - ˙ T M
16 15 fveq2d m = M D X · ˙ 1 ˙ - ˙ T m = D X · ˙ 1 ˙ - ˙ T M
17 16 adantl N Fin R V M B m = M D X · ˙ 1 ˙ - ˙ T m = D X · ˙ 1 ˙ - ˙ T M
18 simp3 N Fin R V M B M B
19 fvexd N Fin R V M B D X · ˙ 1 ˙ - ˙ T M V
20 13 17 18 19 fvmptd N Fin R V M B C M = D X · ˙ 1 ˙ - ˙ T M