Metamath Proof Explorer


Theorem chpo1ub

Description: The psi function is upper bounded by a linear term. (Contributed by Mario Carneiro, 16-Apr-2016)

Ref Expression
Assertion chpo1ub x + ψ x x 𝑂1

Proof

Step Hyp Ref Expression
1 2re 2
2 elicopnf 2 x 2 +∞ x 2 x
3 1 2 ax-mp x 2 +∞ x 2 x
4 chtrpcl x 2 x θ x +
5 3 4 sylbi x 2 +∞ θ x +
6 5 rpcnne0d x 2 +∞ θ x θ x 0
7 3 simplbi x 2 +∞ x
8 0red x 2 +∞ 0
9 1 a1i x 2 +∞ 2
10 2pos 0 < 2
11 10 a1i x 2 +∞ 0 < 2
12 3 simprbi x 2 +∞ 2 x
13 8 9 7 11 12 ltletrd x 2 +∞ 0 < x
14 7 13 elrpd x 2 +∞ x +
15 14 rpcnne0d x 2 +∞ x x 0
16 rpre x + x
17 chpcl x ψ x
18 16 17 syl x + ψ x
19 18 recnd x + ψ x
20 14 19 syl x 2 +∞ ψ x
21 dmdcan θ x θ x 0 x x 0 ψ x θ x x ψ x θ x = ψ x x
22 6 15 20 21 syl3anc x 2 +∞ θ x x ψ x θ x = ψ x x
23 22 adantl x 2 +∞ θ x x ψ x θ x = ψ x x
24 23 mpteq2dva x 2 +∞ θ x x ψ x θ x = x 2 +∞ ψ x x
25 ovexd 2 +∞ V
26 ovexd x 2 +∞ θ x x V
27 ovexd x 2 +∞ ψ x θ x V
28 eqidd x 2 +∞ θ x x = x 2 +∞ θ x x
29 eqidd x 2 +∞ ψ x θ x = x 2 +∞ ψ x θ x
30 25 26 27 28 29 offval2 x 2 +∞ θ x x × f x 2 +∞ ψ x θ x = x 2 +∞ θ x x ψ x θ x
31 14 ssriv 2 +∞ +
32 resmpt 2 +∞ + x + ψ x x 2 +∞ = x 2 +∞ ψ x x
33 31 32 mp1i x + ψ x x 2 +∞ = x 2 +∞ ψ x x
34 24 30 33 3eqtr4rd x + ψ x x 2 +∞ = x 2 +∞ θ x x × f x 2 +∞ ψ x θ x
35 31 a1i 2 +∞ +
36 chto1ub x + θ x x 𝑂1
37 36 a1i x + θ x x 𝑂1
38 35 37 o1res2 x 2 +∞ θ x x 𝑂1
39 chpchtlim x 2 +∞ ψ x θ x 1
40 rlimo1 x 2 +∞ ψ x θ x 1 x 2 +∞ ψ x θ x 𝑂1
41 39 40 ax-mp x 2 +∞ ψ x θ x 𝑂1
42 o1mul x 2 +∞ θ x x 𝑂1 x 2 +∞ ψ x θ x 𝑂1 x 2 +∞ θ x x × f x 2 +∞ ψ x θ x 𝑂1
43 38 41 42 sylancl x 2 +∞ θ x x × f x 2 +∞ ψ x θ x 𝑂1
44 34 43 eqeltrd x + ψ x x 2 +∞ 𝑂1
45 rerpdivcl ψ x x + ψ x x
46 18 45 mpancom x + ψ x x
47 46 recnd x + ψ x x
48 47 adantl x + ψ x x
49 48 fmpttd x + ψ x x : +
50 rpssre +
51 50 a1i +
52 1 a1i 2
53 49 51 52 o1resb x + ψ x x 𝑂1 x + ψ x x 2 +∞ 𝑂1
54 44 53 mpbird x + ψ x x 𝑂1
55 54 mptru x + ψ x x 𝑂1