| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpssre |  | 
						
							| 2 | 1 | a1i |  | 
						
							| 3 |  | 1red |  | 
						
							| 4 |  | simpr |  | 
						
							| 5 | 4 | rpred |  | 
						
							| 6 |  | chpcl |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 | 7 4 | rerpdivcld |  | 
						
							| 9 |  | chpo1ub |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 | 8 10 | o1lo1d |  | 
						
							| 12 |  | chpcl |  | 
						
							| 13 | 12 | ad2antrl |  | 
						
							| 14 | 13 | rehalfcld |  | 
						
							| 15 | 5 | adantr |  | 
						
							| 16 |  | chpeq0 |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 | 17 | biimpar |  | 
						
							| 19 | 18 | oveq1d |  | 
						
							| 20 | 4 | adantr |  | 
						
							| 21 | 20 | rpcnd |  | 
						
							| 22 | 20 | rpne0d |  | 
						
							| 23 | 21 22 | div0d |  | 
						
							| 24 | 13 | ad2ant2r |  | 
						
							| 25 |  | 2rp |  | 
						
							| 26 | 25 | a1i |  | 
						
							| 27 |  | simprll |  | 
						
							| 28 |  | chpge0 |  | 
						
							| 29 | 27 28 | syl |  | 
						
							| 30 | 24 26 29 | divge0d |  | 
						
							| 31 | 23 30 | eqbrtrd |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 | 19 32 | eqbrtrd |  | 
						
							| 34 | 7 | ad2antrr |  | 
						
							| 35 | 24 | adantr |  | 
						
							| 36 | 25 | a1i |  | 
						
							| 37 | 15 | adantr |  | 
						
							| 38 |  | chpge0 |  | 
						
							| 39 | 37 38 | syl |  | 
						
							| 40 | 27 | adantr |  | 
						
							| 41 |  | simprr |  | 
						
							| 42 | 15 27 41 | ltled |  | 
						
							| 43 | 42 | adantr |  | 
						
							| 44 |  | chpwordi |  | 
						
							| 45 | 37 40 43 44 | syl3anc |  | 
						
							| 46 |  | simpr |  | 
						
							| 47 | 34 35 36 37 39 45 46 | lediv12ad |  | 
						
							| 48 |  | 2re |  | 
						
							| 49 | 48 | a1i |  | 
						
							| 50 | 33 47 15 49 | ltlecasei |  | 
						
							| 51 | 2 3 8 11 14 50 | lo1bddrp |  | 
						
							| 52 | 51 | mptru |  | 
						
							| 53 |  | simpr |  | 
						
							| 54 | 53 | rpred |  | 
						
							| 55 | 54 6 | syl |  | 
						
							| 56 |  | simpl |  | 
						
							| 57 | 56 | rpred |  | 
						
							| 58 | 55 57 53 | ledivmul2d |  | 
						
							| 59 | 58 | ralbidva |  | 
						
							| 60 | 59 | rexbiia |  | 
						
							| 61 | 52 60 | mpbi |  |