Step |
Hyp |
Ref |
Expression |
1 |
|
nn0p1nn |
|
2 |
|
nnuz |
|
3 |
1 2
|
eleqtrdi |
|
4 |
|
elfznn |
|
5 |
4
|
adantl |
|
6 |
|
vmacl |
|
7 |
5 6
|
syl |
|
8 |
7
|
recnd |
|
9 |
|
fveq2 |
|
10 |
3 8 9
|
fsumm1 |
|
11 |
|
nn0re |
|
12 |
|
peano2re |
|
13 |
|
chpval |
|
14 |
11 12 13
|
3syl |
|
15 |
|
nn0z |
|
16 |
15
|
peano2zd |
|
17 |
|
flid |
|
18 |
16 17
|
syl |
|
19 |
18
|
oveq2d |
|
20 |
19
|
sumeq1d |
|
21 |
14 20
|
eqtrd |
|
22 |
|
chpval |
|
23 |
11 22
|
syl |
|
24 |
|
flid |
|
25 |
15 24
|
syl |
|
26 |
|
nn0cn |
|
27 |
|
ax-1cn |
|
28 |
|
pncan |
|
29 |
26 27 28
|
sylancl |
|
30 |
25 29
|
eqtr4d |
|
31 |
30
|
oveq2d |
|
32 |
31
|
sumeq1d |
|
33 |
23 32
|
eqtrd |
|
34 |
33
|
oveq1d |
|
35 |
10 21 34
|
3eqtr4d |
|