Metamath Proof Explorer


Theorem chpp1

Description: The second Chebyshev function at a successor. (Contributed by Mario Carneiro, 11-Apr-2016)

Ref Expression
Assertion chpp1 A 0 ψ A + 1 = ψ A + Λ A + 1

Proof

Step Hyp Ref Expression
1 nn0p1nn A 0 A + 1
2 nnuz = 1
3 1 2 eleqtrdi A 0 A + 1 1
4 elfznn n 1 A + 1 n
5 4 adantl A 0 n 1 A + 1 n
6 vmacl n Λ n
7 5 6 syl A 0 n 1 A + 1 Λ n
8 7 recnd A 0 n 1 A + 1 Λ n
9 fveq2 n = A + 1 Λ n = Λ A + 1
10 3 8 9 fsumm1 A 0 n = 1 A + 1 Λ n = n = 1 A + 1 - 1 Λ n + Λ A + 1
11 nn0re A 0 A
12 peano2re A A + 1
13 chpval A + 1 ψ A + 1 = n = 1 A + 1 Λ n
14 11 12 13 3syl A 0 ψ A + 1 = n = 1 A + 1 Λ n
15 nn0z A 0 A
16 15 peano2zd A 0 A + 1
17 flid A + 1 A + 1 = A + 1
18 16 17 syl A 0 A + 1 = A + 1
19 18 oveq2d A 0 1 A + 1 = 1 A + 1
20 19 sumeq1d A 0 n = 1 A + 1 Λ n = n = 1 A + 1 Λ n
21 14 20 eqtrd A 0 ψ A + 1 = n = 1 A + 1 Λ n
22 chpval A ψ A = n = 1 A Λ n
23 11 22 syl A 0 ψ A = n = 1 A Λ n
24 flid A A = A
25 15 24 syl A 0 A = A
26 nn0cn A 0 A
27 ax-1cn 1
28 pncan A 1 A + 1 - 1 = A
29 26 27 28 sylancl A 0 A + 1 - 1 = A
30 25 29 eqtr4d A 0 A = A + 1 - 1
31 30 oveq2d A 0 1 A = 1 A + 1 - 1
32 31 sumeq1d A 0 n = 1 A Λ n = n = 1 A + 1 - 1 Λ n
33 23 32 eqtrd A 0 ψ A = n = 1 A + 1 - 1 Λ n
34 33 oveq1d A 0 ψ A + Λ A + 1 = n = 1 A + 1 - 1 Λ n + Λ A + 1
35 10 21 34 3eqtr4d A 0 ψ A + 1 = ψ A + Λ A + 1