Metamath Proof Explorer


Theorem chprpcl

Description: Closure of the second Chebyshev function in the positive reals. (Contributed by Mario Carneiro, 8-Apr-2016)

Ref Expression
Assertion chprpcl A 2 A ψ A +

Proof

Step Hyp Ref Expression
1 chpcl A ψ A
2 1 adantr A 2 A ψ A
3 chtrpcl A 2 A θ A +
4 chtlepsi A θ A ψ A
5 4 adantr A 2 A θ A ψ A
6 2 3 5 rpgecld A 2 A ψ A +