Metamath Proof Explorer


Theorem chpscmat0

Description: The characteristic polynomial of a (nonempty!) scalar matrix, expressed with its diagonal element. (Contributed by AV, 21-Aug-2019)

Ref Expression
Hypotheses chp0mat.c C = N CharPlyMat R
chp0mat.p P = Poly 1 R
chp0mat.a A = N Mat R
chp0mat.x X = var 1 R
chp0mat.g G = mulGrp P
chp0mat.m × ˙ = G
chpscmat.d D = m Base A | c Base R i N j N i m j = if i = j c 0 R
chpscmat.s S = algSc P
chpscmat.m - ˙ = - P
Assertion chpscmat0 N Fin R CRing M D I N n N n M n = I M I C M = N × ˙ X - ˙ S I M I

Proof

Step Hyp Ref Expression
1 chp0mat.c C = N CharPlyMat R
2 chp0mat.p P = Poly 1 R
3 chp0mat.a A = N Mat R
4 chp0mat.x X = var 1 R
5 chp0mat.g G = mulGrp P
6 chp0mat.m × ˙ = G
7 chpscmat.d D = m Base A | c Base R i N j N i m j = if i = j c 0 R
8 chpscmat.s S = algSc P
9 chpscmat.m - ˙ = - P
10 1 2 3 4 5 6 7 8 9 chpscmat N Fin R CRing M D I N n N n M n = I M I C M = N × ˙ X - ˙ S I M I