Step |
Hyp |
Ref |
Expression |
1 |
|
chp0mat.c |
|
2 |
|
chp0mat.p |
|
3 |
|
chp0mat.a |
|
4 |
|
chp0mat.x |
|
5 |
|
chp0mat.g |
|
6 |
|
chp0mat.m |
|
7 |
|
chpscmat.d |
|
8 |
|
chpscmat.s |
|
9 |
|
chpscmat.m |
|
10 |
|
chpscmatgsum.f |
|
11 |
|
chpscmatgsum.h |
|
12 |
|
chpscmatgsum.e |
|
13 |
|
chpscmatgsum.i |
|
14 |
|
chpscmatgsum.s |
|
15 |
1 2 3 4 5 6 7 8 9
|
chpscmat0 |
|
16 |
|
crngring |
|
17 |
16
|
adantl |
|
18 |
|
eqid |
|
19 |
4 2 18
|
vr1cl |
|
20 |
17 19
|
syl |
|
21 |
20
|
adantr |
|
22 |
16
|
ad2antlr |
|
23 |
|
eqid |
|
24 |
2
|
ply1ring |
|
25 |
2
|
ply1lmod |
|
26 |
|
eqid |
|
27 |
8 23 24 25 26 18
|
asclf |
|
28 |
22 27
|
syl |
|
29 |
|
simpr2 |
|
30 |
|
elrabi |
|
31 |
30
|
a1d |
|
32 |
31 7
|
eleq2s |
|
33 |
32
|
3ad2ant1 |
|
34 |
33
|
impcom |
|
35 |
|
eqid |
|
36 |
3 35
|
matecl |
|
37 |
29 29 34 36
|
syl3anc |
|
38 |
2
|
ply1sca |
|
39 |
38
|
adantl |
|
40 |
39
|
eqcomd |
|
41 |
40
|
adantr |
|
42 |
41
|
fveq2d |
|
43 |
37 42
|
eleqtrrd |
|
44 |
28 43
|
ffvelrnd |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
18 45 46 9
|
grpsubval |
|
48 |
21 44 47
|
syl2anc |
|
49 |
17 25
|
syl |
|
50 |
49
|
adantr |
|
51 |
17 24
|
syl |
|
52 |
51
|
adantr |
|
53 |
|
eqid |
|
54 |
8 23 26 53 46
|
asclinvg |
|
55 |
50 52 43 54
|
syl3anc |
|
56 |
39
|
fveq2d |
|
57 |
56
|
adantr |
|
58 |
13 57
|
eqtr2id |
|
59 |
58
|
fveq1d |
|
60 |
59
|
fveq2d |
|
61 |
55 60
|
eqtrd |
|
62 |
61
|
oveq2d |
|
63 |
48 62
|
eqtrd |
|
64 |
63
|
oveq2d |
|
65 |
|
simplr |
|
66 |
|
hashcl |
|
67 |
66
|
ad2antrr |
|
68 |
|
ringgrp |
|
69 |
16 68
|
syl |
|
70 |
69
|
ad2antlr |
|
71 |
35 13
|
grpinvcl |
|
72 |
70 37 71
|
syl2anc |
|
73 |
|
eqid |
|
74 |
2 4 45 73 10 5 6 35 8 11 12
|
lply1binomsc |
|
75 |
65 67 72 74
|
syl3anc |
|
76 |
2
|
ply1assa |
|
77 |
76
|
adantl |
|
78 |
77
|
ad2antrr |
|
79 |
11
|
ringmgp |
|
80 |
17 79
|
syl |
|
81 |
80
|
ad2antrr |
|
82 |
|
fznn0sub |
|
83 |
82
|
adantl |
|
84 |
11 35
|
mgpbas |
|
85 |
72 84
|
eleqtrdi |
|
86 |
85
|
adantr |
|
87 |
|
eqid |
|
88 |
87 12
|
mulgnn0cl |
|
89 |
81 83 86 88
|
syl3anc |
|
90 |
40
|
fveq2d |
|
91 |
90 84
|
eqtrdi |
|
92 |
91
|
ad2antrr |
|
93 |
89 92
|
eleqtrrd |
|
94 |
5
|
ringmgp |
|
95 |
16 24 94
|
3syl |
|
96 |
95
|
ad2antlr |
|
97 |
|
elfznn0 |
|
98 |
97
|
adantl |
|
99 |
20
|
adantr |
|
100 |
5 18
|
mgpbas |
|
101 |
100 6
|
mulgnn0cl |
|
102 |
96 98 99 101
|
syl3anc |
|
103 |
102
|
adantlr |
|
104 |
8 23 26 18 73 14
|
asclmul1 |
|
105 |
78 93 103 104
|
syl3anc |
|
106 |
105
|
oveq2d |
|
107 |
106
|
mpteq2dva |
|
108 |
107
|
oveq2d |
|
109 |
75 108
|
eqtrd |
|
110 |
15 64 109
|
3eqtrd |
|