Metamath Proof Explorer


Theorem chpscmatgsumbin

Description: The characteristic polynomial of a (nonempty!) scalar matrix, expressed as finite group sum of binomials. (Contributed by AV, 2-Sep-2019)

Ref Expression
Hypotheses chp0mat.c C = N CharPlyMat R
chp0mat.p P = Poly 1 R
chp0mat.a A = N Mat R
chp0mat.x X = var 1 R
chp0mat.g G = mulGrp P
chp0mat.m × ˙ = G
chpscmat.d D = m Base A | c Base R i N j N i m j = if i = j c 0 R
chpscmat.s S = algSc P
chpscmat.m - ˙ = - P
chpscmatgsum.f F = P
chpscmatgsum.h H = mulGrp R
chpscmatgsum.e E = H
chpscmatgsum.i I = inv g R
chpscmatgsum.s · ˙ = P
Assertion chpscmatgsumbin N Fin R CRing M D J N n N n M n = J M J C M = P l = 0 N ( N l) F N l E I J M J · ˙ l × ˙ X

Proof

Step Hyp Ref Expression
1 chp0mat.c C = N CharPlyMat R
2 chp0mat.p P = Poly 1 R
3 chp0mat.a A = N Mat R
4 chp0mat.x X = var 1 R
5 chp0mat.g G = mulGrp P
6 chp0mat.m × ˙ = G
7 chpscmat.d D = m Base A | c Base R i N j N i m j = if i = j c 0 R
8 chpscmat.s S = algSc P
9 chpscmat.m - ˙ = - P
10 chpscmatgsum.f F = P
11 chpscmatgsum.h H = mulGrp R
12 chpscmatgsum.e E = H
13 chpscmatgsum.i I = inv g R
14 chpscmatgsum.s · ˙ = P
15 1 2 3 4 5 6 7 8 9 chpscmat0 N Fin R CRing M D J N n N n M n = J M J C M = N × ˙ X - ˙ S J M J
16 crngring R CRing R Ring
17 16 adantl N Fin R CRing R Ring
18 eqid Base P = Base P
19 4 2 18 vr1cl R Ring X Base P
20 17 19 syl N Fin R CRing X Base P
21 20 adantr N Fin R CRing M D J N n N n M n = J M J X Base P
22 16 ad2antlr N Fin R CRing M D J N n N n M n = J M J R Ring
23 eqid Scalar P = Scalar P
24 2 ply1ring R Ring P Ring
25 2 ply1lmod R Ring P LMod
26 eqid Base Scalar P = Base Scalar P
27 8 23 24 25 26 18 asclf R Ring S : Base Scalar P Base P
28 22 27 syl N Fin R CRing M D J N n N n M n = J M J S : Base Scalar P Base P
29 simpr2 N Fin R CRing M D J N n N n M n = J M J J N
30 elrabi M m Base A | c Base R i N j N i m j = if i = j c 0 R M Base A
31 30 a1d M m Base A | c Base R i N j N i m j = if i = j c 0 R N Fin R CRing M Base A
32 31 7 eleq2s M D N Fin R CRing M Base A
33 32 3ad2ant1 M D J N n N n M n = J M J N Fin R CRing M Base A
34 33 impcom N Fin R CRing M D J N n N n M n = J M J M Base A
35 eqid Base R = Base R
36 3 35 matecl J N J N M Base A J M J Base R
37 29 29 34 36 syl3anc N Fin R CRing M D J N n N n M n = J M J J M J Base R
38 2 ply1sca R CRing R = Scalar P
39 38 adantl N Fin R CRing R = Scalar P
40 39 eqcomd N Fin R CRing Scalar P = R
41 40 adantr N Fin R CRing M D J N n N n M n = J M J Scalar P = R
42 41 fveq2d N Fin R CRing M D J N n N n M n = J M J Base Scalar P = Base R
43 37 42 eleqtrrd N Fin R CRing M D J N n N n M n = J M J J M J Base Scalar P
44 28 43 ffvelrnd N Fin R CRing M D J N n N n M n = J M J S J M J Base P
45 eqid + P = + P
46 eqid inv g P = inv g P
47 18 45 46 9 grpsubval X Base P S J M J Base P X - ˙ S J M J = X + P inv g P S J M J
48 21 44 47 syl2anc N Fin R CRing M D J N n N n M n = J M J X - ˙ S J M J = X + P inv g P S J M J
49 17 25 syl N Fin R CRing P LMod
50 49 adantr N Fin R CRing M D J N n N n M n = J M J P LMod
51 17 24 syl N Fin R CRing P Ring
52 51 adantr N Fin R CRing M D J N n N n M n = J M J P Ring
53 eqid inv g Scalar P = inv g Scalar P
54 8 23 26 53 46 asclinvg P LMod P Ring J M J Base Scalar P inv g P S J M J = S inv g Scalar P J M J
55 50 52 43 54 syl3anc N Fin R CRing M D J N n N n M n = J M J inv g P S J M J = S inv g Scalar P J M J
56 39 fveq2d N Fin R CRing inv g R = inv g Scalar P
57 56 adantr N Fin R CRing M D J N n N n M n = J M J inv g R = inv g Scalar P
58 13 57 eqtr2id N Fin R CRing M D J N n N n M n = J M J inv g Scalar P = I
59 58 fveq1d N Fin R CRing M D J N n N n M n = J M J inv g Scalar P J M J = I J M J
60 59 fveq2d N Fin R CRing M D J N n N n M n = J M J S inv g Scalar P J M J = S I J M J
61 55 60 eqtrd N Fin R CRing M D J N n N n M n = J M J inv g P S J M J = S I J M J
62 61 oveq2d N Fin R CRing M D J N n N n M n = J M J X + P inv g P S J M J = X + P S I J M J
63 48 62 eqtrd N Fin R CRing M D J N n N n M n = J M J X - ˙ S J M J = X + P S I J M J
64 63 oveq2d N Fin R CRing M D J N n N n M n = J M J N × ˙ X - ˙ S J M J = N × ˙ X + P S I J M J
65 simplr N Fin R CRing M D J N n N n M n = J M J R CRing
66 hashcl N Fin N 0
67 66 ad2antrr N Fin R CRing M D J N n N n M n = J M J N 0
68 ringgrp R Ring R Grp
69 16 68 syl R CRing R Grp
70 69 ad2antlr N Fin R CRing M D J N n N n M n = J M J R Grp
71 35 13 grpinvcl R Grp J M J Base R I J M J Base R
72 70 37 71 syl2anc N Fin R CRing M D J N n N n M n = J M J I J M J Base R
73 eqid P = P
74 2 4 45 73 10 5 6 35 8 11 12 lply1binomsc R CRing N 0 I J M J Base R N × ˙ X + P S I J M J = P l = 0 N ( N l) F S N l E I J M J P l × ˙ X
75 65 67 72 74 syl3anc N Fin R CRing M D J N n N n M n = J M J N × ˙ X + P S I J M J = P l = 0 N ( N l) F S N l E I J M J P l × ˙ X
76 2 ply1assa R CRing P AssAlg
77 76 adantl N Fin R CRing P AssAlg
78 77 ad2antrr N Fin R CRing M D J N n N n M n = J M J l 0 N P AssAlg
79 11 ringmgp R Ring H Mnd
80 17 79 syl N Fin R CRing H Mnd
81 80 ad2antrr N Fin R CRing M D J N n N n M n = J M J l 0 N H Mnd
82 fznn0sub l 0 N N l 0
83 82 adantl N Fin R CRing M D J N n N n M n = J M J l 0 N N l 0
84 11 35 mgpbas Base R = Base H
85 72 84 eleqtrdi N Fin R CRing M D J N n N n M n = J M J I J M J Base H
86 85 adantr N Fin R CRing M D J N n N n M n = J M J l 0 N I J M J Base H
87 eqid Base H = Base H
88 87 12 mulgnn0cl H Mnd N l 0 I J M J Base H N l E I J M J Base H
89 81 83 86 88 syl3anc N Fin R CRing M D J N n N n M n = J M J l 0 N N l E I J M J Base H
90 40 fveq2d N Fin R CRing Base Scalar P = Base R
91 90 84 eqtrdi N Fin R CRing Base Scalar P = Base H
92 91 ad2antrr N Fin R CRing M D J N n N n M n = J M J l 0 N Base Scalar P = Base H
93 89 92 eleqtrrd N Fin R CRing M D J N n N n M n = J M J l 0 N N l E I J M J Base Scalar P
94 5 ringmgp P Ring G Mnd
95 16 24 94 3syl R CRing G Mnd
96 95 ad2antlr N Fin R CRing l 0 N G Mnd
97 elfznn0 l 0 N l 0
98 97 adantl N Fin R CRing l 0 N l 0
99 20 adantr N Fin R CRing l 0 N X Base P
100 5 18 mgpbas Base P = Base G
101 100 6 mulgnn0cl G Mnd l 0 X Base P l × ˙ X Base P
102 96 98 99 101 syl3anc N Fin R CRing l 0 N l × ˙ X Base P
103 102 adantlr N Fin R CRing M D J N n N n M n = J M J l 0 N l × ˙ X Base P
104 8 23 26 18 73 14 asclmul1 P AssAlg N l E I J M J Base Scalar P l × ˙ X Base P S N l E I J M J P l × ˙ X = N l E I J M J · ˙ l × ˙ X
105 78 93 103 104 syl3anc N Fin R CRing M D J N n N n M n = J M J l 0 N S N l E I J M J P l × ˙ X = N l E I J M J · ˙ l × ˙ X
106 105 oveq2d N Fin R CRing M D J N n N n M n = J M J l 0 N ( N l) F S N l E I J M J P l × ˙ X = ( N l) F N l E I J M J · ˙ l × ˙ X
107 106 mpteq2dva N Fin R CRing M D J N n N n M n = J M J l 0 N ( N l) F S N l E I J M J P l × ˙ X = l 0 N ( N l) F N l E I J M J · ˙ l × ˙ X
108 107 oveq2d N Fin R CRing M D J N n N n M n = J M J P l = 0 N ( N l) F S N l E I J M J P l × ˙ X = P l = 0 N ( N l) F N l E I J M J · ˙ l × ˙ X
109 75 108 eqtrd N Fin R CRing M D J N n N n M n = J M J N × ˙ X + P S I J M J = P l = 0 N ( N l) F N l E I J M J · ˙ l × ˙ X
110 15 64 109 3eqtrd N Fin R CRing M D J N n N n M n = J M J C M = P l = 0 N ( N l) F N l E I J M J · ˙ l × ˙ X