| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chp0mat.c |
|
| 2 |
|
chp0mat.p |
|
| 3 |
|
chp0mat.a |
|
| 4 |
|
chp0mat.x |
|
| 5 |
|
chp0mat.g |
|
| 6 |
|
chp0mat.m |
|
| 7 |
|
chpscmat.d |
|
| 8 |
|
chpscmat.s |
|
| 9 |
|
chpscmat.m |
|
| 10 |
|
chpscmatgsum.f |
|
| 11 |
|
chpscmatgsum.h |
|
| 12 |
|
chpscmatgsum.e |
|
| 13 |
|
chpscmatgsum.i |
|
| 14 |
|
chpscmatgsum.s |
|
| 15 |
1 2 3 4 5 6 7 8 9
|
chpscmat0 |
|
| 16 |
|
crngring |
|
| 17 |
16
|
adantl |
|
| 18 |
|
eqid |
|
| 19 |
4 2 18
|
vr1cl |
|
| 20 |
17 19
|
syl |
|
| 21 |
20
|
adantr |
|
| 22 |
16
|
ad2antlr |
|
| 23 |
|
eqid |
|
| 24 |
2
|
ply1ring |
|
| 25 |
2
|
ply1lmod |
|
| 26 |
|
eqid |
|
| 27 |
8 23 24 25 26 18
|
asclf |
|
| 28 |
22 27
|
syl |
|
| 29 |
|
simpr2 |
|
| 30 |
|
elrabi |
|
| 31 |
30
|
a1d |
|
| 32 |
31 7
|
eleq2s |
|
| 33 |
32
|
3ad2ant1 |
|
| 34 |
33
|
impcom |
|
| 35 |
|
eqid |
|
| 36 |
3 35
|
matecl |
|
| 37 |
29 29 34 36
|
syl3anc |
|
| 38 |
2
|
ply1sca |
|
| 39 |
38
|
adantl |
|
| 40 |
39
|
eqcomd |
|
| 41 |
40
|
adantr |
|
| 42 |
41
|
fveq2d |
|
| 43 |
37 42
|
eleqtrrd |
|
| 44 |
28 43
|
ffvelcdmd |
|
| 45 |
|
eqid |
|
| 46 |
|
eqid |
|
| 47 |
18 45 46 9
|
grpsubval |
|
| 48 |
21 44 47
|
syl2anc |
|
| 49 |
17 25
|
syl |
|
| 50 |
49
|
adantr |
|
| 51 |
17 24
|
syl |
|
| 52 |
51
|
adantr |
|
| 53 |
|
eqid |
|
| 54 |
8 23 26 53 46
|
asclinvg |
|
| 55 |
50 52 43 54
|
syl3anc |
|
| 56 |
39
|
fveq2d |
|
| 57 |
56
|
adantr |
|
| 58 |
13 57
|
eqtr2id |
|
| 59 |
58
|
fveq1d |
|
| 60 |
59
|
fveq2d |
|
| 61 |
55 60
|
eqtrd |
|
| 62 |
61
|
oveq2d |
|
| 63 |
48 62
|
eqtrd |
|
| 64 |
63
|
oveq2d |
|
| 65 |
|
simplr |
|
| 66 |
|
hashcl |
|
| 67 |
66
|
ad2antrr |
|
| 68 |
|
ringgrp |
|
| 69 |
16 68
|
syl |
|
| 70 |
69
|
ad2antlr |
|
| 71 |
35 13
|
grpinvcl |
|
| 72 |
70 37 71
|
syl2anc |
|
| 73 |
|
eqid |
|
| 74 |
2 4 45 73 10 5 6 35 8 11 12
|
lply1binomsc |
|
| 75 |
65 67 72 74
|
syl3anc |
|
| 76 |
2
|
ply1assa |
|
| 77 |
76
|
adantl |
|
| 78 |
77
|
ad2antrr |
|
| 79 |
|
eqid |
|
| 80 |
11
|
ringmgp |
|
| 81 |
17 80
|
syl |
|
| 82 |
81
|
ad2antrr |
|
| 83 |
|
fznn0sub |
|
| 84 |
83
|
adantl |
|
| 85 |
11 35
|
mgpbas |
|
| 86 |
72 85
|
eleqtrdi |
|
| 87 |
86
|
adantr |
|
| 88 |
79 12 82 84 87
|
mulgnn0cld |
|
| 89 |
40
|
fveq2d |
|
| 90 |
89 85
|
eqtrdi |
|
| 91 |
90
|
ad2antrr |
|
| 92 |
88 91
|
eleqtrrd |
|
| 93 |
5 18
|
mgpbas |
|
| 94 |
5
|
ringmgp |
|
| 95 |
16 24 94
|
3syl |
|
| 96 |
95
|
ad2antlr |
|
| 97 |
|
elfznn0 |
|
| 98 |
97
|
adantl |
|
| 99 |
20
|
adantr |
|
| 100 |
93 6 96 98 99
|
mulgnn0cld |
|
| 101 |
100
|
adantlr |
|
| 102 |
8 23 26 18 73 14
|
asclmul1 |
|
| 103 |
78 92 101 102
|
syl3anc |
|
| 104 |
103
|
oveq2d |
|
| 105 |
104
|
mpteq2dva |
|
| 106 |
105
|
oveq2d |
|
| 107 |
75 106
|
eqtrd |
|
| 108 |
15 64 107
|
3eqtrd |
|